
Munster Technological University Munster Technological University

SWORD - South West Open Research SWORD - South West Open Research

Deposit Deposit

Theses Dissertations and Theses

12-2015

Neural Networks for Autonomous Control of Unmanned Neural Networks for Autonomous Control of Unmanned

Helicopters Helicopters

Padraig M. Moriarty
Department of Computing, Institute of Technology, Tralee, Kerry, Ireland

Follow this and additional works at: https://sword.cit.ie/allthe

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Moriarty, Padraig M., "Neural Networks for Autonomous Control of Unmanned Helicopters" (2015).
Theses [online].
Available at: https://sword.cit.ie/allthe/808

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at SWORD - South
West Open Research Deposit. It has been accepted for inclusion in Theses by an authorized administrator of
SWORD - South West Open Research Deposit. For more information, please contact sword@cit.ie.

https://www.cit.ie/
https://www.cit.ie/
https://sword.cit.ie/
https://sword.cit.ie/
https://sword.cit.ie/allthe
https://sword.cit.ie/etd
https://sword.cit.ie/allthe?utm_source=sword.cit.ie%2Fallthe%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=sword.cit.ie%2Fallthe%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://sword.cit.ie/allthe/808?utm_source=sword.cit.ie%2Fallthe%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sword@cit.ie

Neural Networks for Autonomous Control of

Unmanned Helicopters

Padraic M. Moriarty

Supervisors:

Dr. Robert Sheehy

Dr. Pat Doody

A thesis submitted to Quality and Qualifications Ireland in

fulfilment of the requirements for the Master of Science

Degree

9th December, 2015

ii

Abstract

Landing a helicopter on a ship in high seas can be a dangerous endeavour. This thesis

proposes to examine the possible uses of Artificial Neural Networks (A.N.N.) in the

aiding and/or the landing of an Unmanned Aerial Vehicle (U.A.V.). It proposes that this

procedure can be segregated into three distinct phases. The data for the A.N.N. training

and testing sets is generated through simulation in the Unity cross-platform game

engine. Phase 1 is intended to convert video images from an on-board camera to a set of

numeric outputs suitable for use in Phase 2. Phase 2 estimates the current relative

orientation and distance of the camera to the platform. Phase 3 determines when a future

landing window may occur.

Phase 1 takes live video feed of the helipad and a corner recognition algorithm is

applied to images captured from it. The co-ordinates of the vertices have been measured

to within +/- 0.3%. Phase 2 required normalized points representing positions on a

screen of specific elements on the landing pad. Orientation has been determined to

within 3.60 and distance correct to within 2%. Phase 3 takes the orientations calculated

from Phase 2 over a given time period and predicts whether at a specific, fixed, time

into the future landing would be possible based on a maximum deviation of the

orientation from the ideal.

iii

Acknowledgements

I would like to thank my supervisors Dr. Robert Sheehy and Dr. Pat Doody and

acknowledge their help, guidance and advice during this research.

I would also like to thank my wife Enda and my children Rhea and Rae for their

support and patience throughout.

Finally I would like to thank the staff at the IMaR Technology Gateway at the

Institute of Technology in Tralee, Dr. Ultan McCarthy, Andrew Shields, Keith O’

Faoláin, Sunil Maharjan, Alex Martinez, Carol Collins and my fellow researchers Alex

Maguire, Joanna Kossakowska, Michelle O’Hanlon, Revathi Nukala and Dan Dowling

for their support and words of encouragement during this undertaking.

iv

Table of Contents

Abstract .. ii

Acknowledgements .. iii

List of Figures... vii

List of Tables ... ix

Chapter 1 Introduction .. 1

1.1 Project Motivation ... 1

1.2 Aims of Project ... 3

1.3 Thesis Structure... 5

Chapter 2 Artificial Neural Networks .. 7

2.1 Introduction ... 7

2.2 Biological Neural Networks .. 7

2.3 History of A.N.N.s .. 10

2.3.1 McCullogh-Pitts Neuron ... 10

2.3.2 Perceptron .. 12

2.3.3 Multi-Layered Perceptron ... 14

2.3.4 Adaline / Madaline ... 15

2.3.5 Minsky & Pappert ... 17

2.3.6 Modern Developments .. 17

2.4 ANN Architecture / Backpropagation .. 18

2.4.1 Introduction .. 18

2.4.2 Summation Function ... 19

2.4.3 Activation and Output ... 20

2.4.4 Feed forward and Feedback Neural Networks ... 23

2.5 ANN Training Algorithms and Optimisation Techniques 24

2.5.1 Backpropagation ... 25

2.5.2 Scaled Conjugate Gradient.. 25

2.5.3 Newton’s Method ... 25

2.5.4 Quasi-Newton ... 26

2.5.5 Gauss-Newton .. 27

v

2.5.6 Levenberg-Marquardt ... 27

2.6 Over-fitting and Generalisation ... 28

2.7 ANN Implementation .. 29

2.7.1 Data Mapping ... 29

2.7.2 Pattern Recognition .. 30

2.8 Conclusion .. 30

Chapter 3 The implementation of Artificial Neural Networks and Other Methods

for Vehicle Control ... 32

3.1 Introduction ... 32

3.2 Analysis ... 33

3.2.1 Vehicle control using Artificial Neural Networks.................................... 33

3.2.2 Machine Vision Control Systems .. 41

3.2.3 Algorithm Based Control Systems .. 48

3.3 Conclusion .. 50

Chapter 4 Technical and Mathematical Background .. 51

4.1 Introduction ... 51

4.2 Quaternions ... 51

4.3 Ship Motion .. 57

4.4 Harris-Stephens Corner Algorithm .. 60

Chapter 5 Phase 1 Image Processing ... 62

5.1 Introduction ... 62

5.2 Methodology ... 62

5.3 Results & Conclusions .. 63

Chapter 6 Phase 2 Orientation and Distance .. 65

6.1 Introduction ... 65

6.2 Methodology ... 66

6.2.1 Basis of Methodology ... 66

6.2.2 Evolution of Methodology .. 66

6.2.3 Final Methodology ... 70

6.3 Results .. 72

vi

6.4 Conclusions ... 74

Chapter 7 Phase 3 Landing Prediction ... 76

7.1 Introduction ... 76

7.2 Methodology ... 77

7.3 Results .. 78

7.4 Conclusions ... 83

Chapter 8 Implementation of Phases 1, 2 and 3 ... 84

8.1 Introduction ... 84

8.2 Results of Phase 1, 2 and 3 combined .. 84

8.2 Conclusion .. 87

Chapter 9 Conclusions and Recommendations .. 88

9.1 Conclusions, Recommendations and Further Work.. 88

Bibliography ... 90

Appendix A .. 102

Detailed treatment of Eqn 11: ... 102

Tables of Results .. 103

Appendix B .. 106

Contents of DVD .. 106

vii

List of Figures
Figure 1 Flowchart Phase 1 to Phase 3 ... 4

Figure 2 A neuron interacting with another neuron ... 8

Figure 3 McCulloch–Pitts Neuron (MCP) .. 11

Figure 4 Hyperplane showing decision boundary between a two-class pattern

classification ... 13

Figure 5 Multi-Layered Perceptron ... 14

Figure 6 Structure of an Adaline .. 15

Figure 7 Step (Threshold) function ... 21

Figure 8 Log and Tangential Sigmoid .. 21

Figure 9 Piecewise linear transfer function ... 22

Figure 10 Gaussian transfer function .. 23

Figure 11 A.N.N. configuration for mapping input to target output 29

Figure 12 A.N.N. configuration to classify vectors ... 30

Figure 13 Neural Network controlled car ... 40

Figure 14 Homographic target detection: (a) multiple homography detection when

landing (b) detection of an opening for ingress to a building 42

Figure 15 Once airborne the (a) autonomous landing and (b) autonomous ingress

algorithm functions in three separate stages: “Detection, Refinement, and

Approach” ... 43

Figure 16 M.A.V. in hover position and “H” tracking .. 44

Figure 17 Take-off, flight trajectory and landing .. 45

Figure 18 ExoMars 2018 proposed descent procedure .. 47

Figure 19 Visualisation of 2D and 3D rotation prior to Hamilton’s discovery of

quaternions .. 52

Figure 20 Relationships between i,j and k. ... 53

Figure 21 SLERPing .. 57

Figure 22 Trochoidal form of ocean waves .. 59

Figure 23 Co-ordinate frames ... 60

Figure 24 Matlab vs Unity “H” vertices calculation.. 64

Figure 25 Ship motion at sea .. 65

Figure 26 Matlab Corner Recognition .. 66

viii

Figure 27 Quaternion and distance regression plots for training 68

Figure 28 A.N.N. training using quaternions for rotation .. 69

Figure 29 Training regression plots, A.N.N. trained using ship data 71

Figure 30 M.S.E. forA.N.N. trained using ship data ... 72

Figure 31 Regression plot for test data, A.N.N. trained using ship data 73

Figure 32 Error Histogram, A.N.N. trained using ship data .. 74

Figure 33 Angle between normal vector and ship ... 76

Figure 34 Sample training dataset for Phase 3 .. 77

Figure 35 Confusion Matrix for Phase 3 training 5 second landing time 79

Figure 36 Confusion Matrix for tested Phase 3 A.N.N. 5 second landing 80

Figure 37 Confusion matrix Phase 3 training 1 second landing 81

Figure 38 Confusion Matrix for Phase 3 1 second landing test 82

Figure 39 Video capture at 100ms intervals .. 85

ix

List of Tables
Table 1 Helipad orientation vs orientation calculated by A.N.N. 86

Table 2 Temporal input for phase 3 A.N.N. .. 86

Table 3 Results for first A.N.N. in Phase 2, Euler angles for orientation 103

Table 4 A.N.N. test results using quaternions, phase 2 testing actual vs expected

rotation .. 103

Table 5 A.N.N. test results for Phase 2 using quaternions for orientation and ship data

for training and testing .. 104

Table 6 Douglas Sea state scale and swell scale .. 105

1

Chapter 1 Introduction
1.1 Project Motivation

Unmanned Aerial Vehicles (U.A.V.) are increasingly being utilised in place of

Manned Aerial Vehicles (M.A.V.) especially in situations which are dangerous or

undesirable for human pilots. U.A.V.s are defined as “an aircraft piloted by remote control or

on-board computers” (Oxford, 2015). Most military U.A.V.s have fixed wings but with

advances in technology rotor wing U.A.V.s have become more prevalent and as a result

have become available to the wider public. These are much easier to remotely control

and do not require large take-off and landing areas. They will be used by Amazon to

autonomously deliver goods (Amazon Prime Air, 2015) and are being used by the navy

for surveillance, by farmers for crop surveying, by television companies for low-cost

aerial footage, by search and rescue teams and by hobbyists to experience the thrill of

flight control from the aircraft’s perspective. U.A.V.s have become so pervasive that it

has led to a need for specific legislation to safeguard civilian and military flight areas

and to safeguard the public from accidents involving U.A.V.s.

The Irish Navy (O’Riordan, 2015) is planning to use remotely controlled U.A.V.s

which they will launch and land from their vessels. They will add to the Naval Service’s

capabilities in operations involving illegal drug/fishing activity and surveying oil and

chemical spillages. At present the Irish Air Corps has, in service, six Augusta Westland

AW139 military helicopters (Ireland Defence Forces, 2015) each with a price tag of

€13million (Cummins, 2007). Employing military drones to replace manned aircraft for

some operations at sea would be advantageous for several reasons including cost

effectiveness, risk aversion and increased practicality. As a cost effective measure alone

the price difference between manned and unmanned aerial vehicles is quite substantial.

The Irish Government purchased two U.A.V. systems in 2007 at a total cost of

€780,000 (Oireachtas, 2015).

Flying at sea is considered more dangerous than land based flight because of the lack

of a safe landing zone in the event of an accident or technical failure (Qian,

Gribkovskaia, & Halskau, 2011). If sea conditions are not favourable landing can be

difficult (Lee, Horn, & Long, 2003) even for a well trained and experienced pilot.

Landing a U.A.V. on a ship is a perilous exercise and “is one of the most dangerous of all

2

helicopter operations” (Voskuijl, Walker, Manimala, & Gubbels, 2008, p. 1). Ship’s motion

exhibits six Degrees of Freedom (D.o.F.), three rotational; pitch, roll, yaw and three

translational; heave, surge and sway. An aircraft exhibits the same range of motion.

Naval services around the world are increasingly utilising U.A.V.s to replace costly

manned aircraft for reconnaissance and dangerous missions. Because of the construction

and mechanics of rotor winged U.A.V.s a crash on landing can be catastrophic. In

difficult landing conditions the choice is often made to abort a landing and to ditch the

aircraft in the sea and retrieve it, rather than risk the possibility of a potentially

devastating and expensive crash landing. Ditching the U.A.V. accepts a level of

damage, albeit far less than that of a crash on the deck of the ship, and a further cost in

the time it takes to retrieve the U.A.V. from the ocean.

The use of ship-board U.A.V.s is not limited to military applications. Oil drilling

companies make use of drone technologies for unmanned inspections of oil rigs

(AUVSI, 2015). The field of marine research is also benefitting from U.A.V.

deployment (Doughton, 2013). With the shift from military to more civilian domains

the use of U.A.V.s in diverse fields of human interest is increasing and will only be

limited by restrictions imposed by aviation authorities (FAA, 2015).

This thesis proposes to examine the feasibility of using Artificial Intelligence (A.I.) to

land, or aid in the landing of a U.A.V. on the helipad of a ship.

Artificial Neural Networks (A.N.N.) are a branch of A.I.. They have a proven track-

record for controlling vehicles of all types including aerial vehicles. The truck backer

upper (Nguyen & Widrow, 1989) used A.N.N.s to first learn how to drive a computer

simulated truck and trailer and then control it. Hover control of a U.A.V. was achieved

by researchers (Wyeth, Buskey, & Roberts, 2000) at the University of Queensland using

A.N.N.s. David Singleton (Singleton, 2013) trained an A.N.N. to navigate a remotely

controlled car on a track even when the track was built on the fly. Autonomous U.A.V.

landing was proposed by (Sanchez-Lopez J. , Saripalli, Campoy, Pestana, & Fu, 2013)

using 3D vision and an A.N.N. to classify a landing zone. There are many more

examples of A.N.N.s used to control or classify elements of U.A.V. flight control.

A.N.N. implementation for autonomous vehicles has become prominent in the public

arena thanks to self-parking cars (Oentaryo & Pasquier, 2004), collision warning

3

systems (Lee & Yeo, 2015), Google cars (Metz, 2015), Tesla auto-piloted cars (Chang,

2015), driverless formula E cars (Burgess, 2015), Mercedes-Benz F105 autonomous

cars (Mercedes-Benz, 2015) and Amazon’s drone deliveries (Amazon Prime Air, 2015).

Autonomous U.A.V.s are controlled by on-board control systems. They have the

ability to take-off, fly and land without the need for human intervention. These types of

U.A.V. are particularly useful in situations where they are out of sight or situations of

extreme danger such as natural disasters. U.A.V.s capable of taking off from and

landing on a sea-based platform or ship are increasingly being used for reconnaissance,

aerial photography, weather data acquisition and many more applications. Naval

services are the primary users of U.A.V.s at sea but many civilian organisations also

make use of them.

A major requirement when using autonomous U.A.V.s, in hostile offshore

environments, is the aircraft’s capability to return and land safely on a ship or platform.

Development of a safe, reliable method of autonomously landing a U.A.V. on a moving

platform at sea is the main motivation for this project.

1.2 Aims of Project

This project was only ever going to be feasible through simulation, due to the costs of

the U.A.V.s in question and the very nature of the conditions in which they were

intended to operate. Given that modern drones are inherently stable, i.e. can

automatically hover at a given position (Stockwell, 2014) (AltiGator, 2015), it was

decided that this project would concentrate on aiding the landing by predicting when

appropriate landing windows would occur.

Ideally the helipad should be flat for touch down, but U.A.V.s are now able to land

on sloped surfaces also, this has been demonstrated recently by Defense Advanced

Research Projects Agency (DARPA) (darpa.mil, 2015). This thesis examines the use of

A.N.N.s to predict when a helipad will be within this threshold. All these U.A.V.s will

have an on-board camera, which will deliver its feed in real-time and will not require

any additional hardware on the helipad. To summarise, the goal is to be able to predict

suitable landing windows given live video of the helipad from the U.A.V..

4

At this stage it was decided to break up the problem into three distinct phases. This

research proposes a novel approach to the task of landing a U.A.V. on a ship using

A.N.N.s. The ultimate goal is to produce a safe and reliable landing tool. The flowchart

below illustrates the proposed research process.

Figure 1 Flowchart Phase 1 to Phase 3

5

The three distinct phases are as follows:

Phase 1 assumes that there will be a video feed available from an on-board camera

and attempts to ascertain key points which would allow phase 2 to calculate the relative

orientation and distance to the platform. In the case of this experiment, the points of

interest are the 12 vertices defining the corners of the "H" of the helipad. The exact

number of required points is arbitrary, even the outer four vertices would suffice in

order to calculate orientation. Using all of the vertices ensures that a broader dataset can

be used for training. The points are normalised and scaled to ensure independence from

camera resolutions.

Phase 2 takes the normalised points provided by Phase 1 and uses an A.N.N. to

calculate the relative orientation and distance of the helipad to the U.A.V..

Phase 3 uses an A.N.N. to predict an optimal landing period some distinct time into

the future. This is achieved by using the output data from Phase 2 and processing it so

that the landing pad’s orientation a set time in the future can be used as instantaneous

training data. The orientation data for Phase 2 is captured every 100ms and compiled

into samples of 500ms intervals. The angular difference between a global upward

pointing vector and a normal from the ship is computed. This angular difference from

the sample five seconds in advance is set as the output value for each instantaneous

input sample.

1.3 Thesis Structure

This research proposes to investigate the possibility of using A.I. to land or aid in the

landing of a U.A.V.. The particular field within A.I. which will be used to undertake

this investigation is A.N.N.s. Once trained they will be used to calculate orientations

and also to predict future outcomes as well as possibly controlling a U.A.V..

A.N.N.s, their history, implementations and fundamental principles will be discussed

in Chapter 2. The control of vehicles using A.N.N.s, optical technologies and algorithms

will be explored in Chapter 3. Chapter 4 deals with the technical and mathematical

issues encountered.

6

The main experimental work of this research has been broken down into distinct

phases. Chapter 5, Phase 1, contains an explanation of the process involved in using still

images from live video to produce a dataset to train an A.N.N.. The training of the

A.N.N., Phase 2 orientation calculation, will be discussed in detail in Chapter 6. The

landing prediction phase, Phase 3, will be explained in Chapter 7.

Chapter 8 comprises a standalone experiment which combines Phases 1, 2 and 3. The

conclusions attained from this research are summarised in Chapter 9 and further

research which could be carried out is also detailed here.

7

Chapter 2 Artificial Neural Networks
2.1 Introduction

Human learning involves an electrochemical process of repeated motion of electrical

impulses throughout a biological neural network. Neurons can be considered the

building blocks for human and animal learning. Electrical impulses progress through the

biological brain by exceeding a threshold which exists between neurons. If the impulse

is strong enough then the person or animal will remember the action which caused the

transition and therefore will learn from it.

Artificial neurons have been developed to model biological neurons. They form the

basic structure of an A.N.N. which functions in a similar way to a biological neural

network (B.N.N.). An input signal is presented to a neuron and this signal is processed

and transferred to successive neurons, each having a unique threshold value, until a

required output signal is attained. When training an A.N.N. the threshold values can be

adjusted and the network learns to produce the required output.

This chapter explains the fundamental theories relating B.N.N.s to A.N.N.s, by first

introducing both networks and then detailing the evolution of A.N.N.s. The

development of back-propagation algorithms, which the network uses to match the

target output with the actual output, will be discussed. Finally, the reason why particular

A.N.N.s and algorithms have been chosen for this research will be explained.

2.2 Biological Neural Networks

Biological nervous systems contain neurons and another type of cell known as a glial

cell. Glial cells’ primary function is to maintain the structure of the brain and nervous

system (Jabr, 2012). They are not capable of conducting electrical impulses. Neurons,

on the other hand, do conduct electrical signals which propagate through the nervous

system. Nerve impulses in muscles and glands and other receptors in the body excite

neurons to a point where they emit these electrical signals. The number of neurons in a

human brain has been estimated at 86 billion (Herculano-Houzel, 2012).

8

A typical biological neuron is illustrated in Figure 2. All neurons have a similar

structure and differ only in length and shape depending on their function in the nervous

system. Neurons connect with other neurons through the release of a chemical called a

neurotransmitter. This neurotransmitter is only released when the electrical signal

within the neuron exceeds a threshold. The electrical signal enters the receiving

(postsynaptic) neuron via the dendrites, across a gap between it and the transmitting

(presynaptic) neuron called a synapse. The cell body contains a nucleus which directs

the incoming signal to the axon. The axon determines whether the signal will be

transferred to the axon terminals.

Figure 2 A neuron interacting with another neuron

Source: Adapted from http://www.urbanchildinstitute.org (Urban Child Institute, 2015)

The signal propagation is executed by rapidly changing the polarity within the axon, a

process known as action potential. There are three phases in the action potential.

1. Depolarisation: When a neuron is not receiving a signal it is said to have a resting

potential. Once the neuron receives a signal, positively charged sodium cations (atoms

that have a deficit of electrons) rapidly enter the inside of the membrane within the

9

axon. This has the effect of making the polarity inside the membrane more positive than

the outside.

2. Repolarisation: Once the electrical potential between either face of the membrane

wall reaches a threshold of excitement sodium cations are blocked from continuing to

enter the membrane. At this point potassium cations are released from inside the

membrane and counteract the outer negative potential neutralising it and restoring the

neuron to its resting potential.

3. Refactory Phase: During this phase sodium cations are released back to the outer

side of the membrane and potassium cations return to the inner side. This part of the

axon cannot reach the threshold of excitement again until all of the ions have returned to

their resting state. The refactory phase lasts approximately 1 millisecond (Freeman &

Skapura, 1992).

These phases send the signal quickly through the axon in a wave-like motion.

Regardless of the strength of the stimulating signal the action potential has a maximum

value of between 70 and 100 mV. A myelin sheath insulates the axon so the electrical

signal can travel quicker through it. Nodes of Ranvier force the signal to jump from one

section of the axon to the next. Once the electrical signal reaches the terminals of the

axon neurotransmitters are released and these chemicals make the transition across the

synapse and land in receptors in the dendrite of the postsynaptic neuron. At the receptor

site the neurotransmitter is converted back to an electrical signal. There are over fifty

types of neurotransmitter in the human brain and each one can have a different effect on

the signal generated in the postsynaptic cell. Some can dampen a signal while others are

used to stimulate the target neuron.

Finally, the presynaptic neuron re-absorbs the neurotransmitters once the neural

impulse has been successfully transmitted (Boundless, 2013). This whole process

enables humans and animals to respond to external stimuli and to learn through

repetitive execution of actions.

10

2.3 History of A.N.N.s

A.N.N.s were developed as a system which could learn in a similar way to the human

brain. Just as synapses in the brain channel electrical impulses an A.N.N. contains

channels which direct the flow of data.

Artificial Neural Networks (A.N.N.) form a subset of inductive machine learning

which is a subfield of Artificial Intelligence (A.I.). The development of A.I. techniques

has given computers the ability to adapt and learn to complete tasks which were

previously only possible for humans.

A.N.N.s have the ability to learn an input pattern and match a desired output so they

can be trained to classify, recognise (Optical Character Recognition (O.C.R.) etc.),

predict (weather, stock etc.), optimise (electronic circuit design) and fit data. In this way

an A.N.N. can model a relationship. If such a relationship is numerically quantifiable

then an A.N.N. can be trained to recognise it or predict what it might do. A.N.N.s are

particularly useful for analysing non-linear relationships because they can learn to

recognise patterns and relationships within the system. Analysis of systems that have a

linear relationship are best analysed using well-established statistics and probability

techniques.

2.3.1 McCullogh-Pitts Neuron

The first demonstration of a neuron based on the workings of a B.N.N. was presented

in a paper by the neuroscientist Warren S. McCulloch and a logician Walter Pitts in

1943 (McCulloch & Pitts, 1943). The McCullogh-Pitts neuron (M.C.P.), also known as

a Threshold Logic Unit (T.L.U), would become the basis for early research into

A.N.N.s. In fact, apart from Boolean neural networks, modern A.N.N.s can be traced

back directly to the MCP neuron (Picton, 2000).

11

Figure 3 McCulloch–Pitts Neuron (MCP)

Source: Adapted from http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation

(Rossmcf, 2008)

The basic concept of the MCP is illustrated in Figure 3 above. The two scientists

created a very basic model of what they perceived as the functionality of a biological

neuron. Their system consists of inputs, one output and a processing element (P.E.). The

P.E. contains a pre-set threshold value and it is actually a linear combiner with a hard

limiter, Eqn 1. The inputs are split into excitory and inhibitory elements. The excitory

inputs are positive elements that promote the propagation of the input through the

system. They have a value of either one or zero (on or off). The inhibitory element can

prevent this propagation from occurring. The threshold value once exceeded allows the

input signal to progress to the output. If the inhibitory input is active or switched on

then the threshold value will never be exceeded but if it is inactive and the sum of

excitory inputs exceeds the threshold then the MCP neuron will activate. This is similar

to the firing action of biological neurons where the signal propagates through the axon.

The formula below describes the functionality of the neuron mathematically.

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = � 1, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑒𝑒𝑗𝑗 ≥ 𝑇𝑇𝑛𝑛
𝑗𝑗=1

0
 (Eqn 1)

In 1956, the mathematician, John von Neumann modified McCulloch and Pitts’

model by changing the inhibitory inputs to negative values. This meant that those inputs

could be included in the summation of all inputs and the total would have to exceed the

threshold before a 1 would result at the output. Von Neumann’s investigations also

http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation

12

improved on McCulloch-Pitts “circle-free machines” (von Neumann, 1956) by creating

systems which had feedback loops. His work “extends the logic of constructable machines to a

large portion of intuitionistic logic” (von Neumann, 1956).

These systems had shortcomings and could only emulate basic Boolean logic gates.

They were limited because their architecture could only support systems which were

linearly separable. These are systems where the 0 outputs can be separated from output

values of 1 on a hyperplane by one linear partition (Figure 4). An XOR gate could not

be created because all of the inputs were connected to one PE and the only decision

which could be made was whether a threshold had been exceeded or not. XOR required

further processing in the network and some method of tuning the value of the input.

Donald Hebb, in his 1949 book, The Organization of Behavior, described what is

now known as Hebb’s Rule or Hebb’s synapse (Hebb, 1949). He proposed that when a

biological neuron excites a neighbouring neuron the excitory neuron is somehow

strengthened so it becomes more efficient at exciting the receptor neuron. He changed

some fundamental perceptions within neural science and laid the groundwork for

weighting inputs which is a core tenet of artificial neural learning.

2.3.2 Perceptron

The development of the single layer perceptron by Rosenblatt in 1958 didn’t solve the

XOR problem but it did introduce the concept of summing inputs and weights over time

and varying the weights relative to the output. His neuron became the first to be

described by an algorithm. Input data could be classified into linearly separable classes

for the first time. It was based on the MCP model of a neuron and consisted of inputs

which were linearly combined and presented to a hard limiter which held the threshold

value. Because the process was temporal a bias input, fixed at 1, was also applied so

that at time = 0 the sum of inputs and weights equalled the bias only. The input to the

hard limiter can be described by the following formula.

∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 (Eqn 2)

13

Where 𝑥𝑥 = input, 𝑤𝑤 = weight, 𝑏𝑏 = bias, 𝑛𝑛 = total number of inputs

The system was capable of classifying two patterns and the output is either 1 or -1,

which represents each class. These classes can be separated by a hyperplane making

them linearly separable. The hyperplane is offset from the origin by the bias amount b.

Figure 4 Hyperplane showing decision boundary between a two-class pattern classification

The perceptron’s ability to update the weights of each input at successive time

intervals is described mathematically by the formula below. This is known as the error-

correcting learning rule (Rumelhart, Hinton, & Williams, 1986) (Levine, 2000)

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) + ƞ[𝑑𝑑(𝑛𝑛) − 𝑦𝑦(𝑛𝑛)]𝑥𝑥(𝑛𝑛) (Eqn 3)

14

where

𝑥𝑥(𝑛𝑛) = the input vector. The first element of which is 1.

𝑦𝑦(𝑛𝑛) = sgn[𝑤𝑤 T(𝑛𝑛) 𝑥𝑥(𝑛𝑛)] sgn = signum function (1 if 𝑥𝑥> 0, 0 if 𝑥𝑥 = 0, -1 if 𝑥𝑥< 0)

𝑑𝑑(𝑛𝑛)= +1 if 𝑥𝑥 is a member of class 1, -1 if 𝑥𝑥 is a member of class 2

ƞ = the learning rate, usually a value between 0 and 1

𝑤𝑤(𝑛𝑛) = the weight vector. The first element of which is the bias value.

𝑤𝑤(𝑛𝑛 + 1) = the adapted weight vector

2.3.3 Multi-Layered Perceptron

Rosenblatt’s single layer perceptron is limited to classifying patterns which are

linearly separable. Despite this his work is of major historical importance and has led to

the development of neural networks which solve the issues of linear inseparability. His

work has led directly to the development of the multi-layered perceptron (M.L.P.).

Figure 5 below illustrates the fundamental structure.

Figure 5 Multi-Layered Perceptron

Commented [R1]: need to use word Insert -> equation to make
look nicer

15

An M.L.P. comprises an input layer, a hidden layer and an output layer. The elements

in each layer are known as units or nodes. It is fully-connected which means that all the

nodes in one layer are connected to every node in the successive layer. Because of their

architecture M.L.P.s have come to be considered as universal approximators which

means that they will approximate to a desired accuracy any function which is

measurable (Haykin, 1994).

 2.3.4 Adaline / Madaline

Widrow and Hoff of Stanford University developed the ADALINE

(ADAptiveLINear Element or ADAptiveLInearNEuron) in 1960.

Figure 6 Structure of an Adaline

Figure 6 above illustrates the main components of an ADALINE. It is similar to the

perceptron but it is trained differently. While the perceptron implemented an error

correction learning rule to reduce the error of every output to match the desired output

the ADALINE calculated the Mean Squared Error (M.S.E.) of all the outputs and

adapted the weights of the inputs continuously. The algorithm follows a steepest descent

path using an instant gradient calculation and this tends to minimise the mean of the

16

square of the error in the training data (Widrow & Lehr, 1996). The algorithm can be

described in several ways mathematically and the following is one such depiction

𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 + 2𝜇𝜇𝜇𝜇𝑛𝑛𝑥𝑥𝑛𝑛 (Eqn 4)

where

𝑤𝑤𝑛𝑛+1 = updated weight

𝜀𝜀𝑛𝑛 = linear error = 𝑑𝑑𝑛𝑛 − 𝑤𝑤𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛

𝑑𝑑𝑛𝑛 = desired response

𝑤𝑤𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 = linear output prior to weight adaptation

𝜇𝜇 is a parameter used to control stability and the convergence rate

Although similar to Rosenblatt’s perceptron algorithm there are several marked

differences. The perceptron rule is non-linear whereas the LMS rule is linear. LMS may

be used with desired outputs which are both analogue and binary but the perceptron rule

can only be used with binary outputs. If a dataset is not linearly separable then a

perceptron will continue to run ad infinitum and often produces a large error solution.

LMS yields a low error solution even with linearly inseparable data although

classification of these patterns is not guaranteed.

The concept of a multilevel neural network was conceived again by Widrow and Hoff

in 1960. They named it the MADALINE (Many ADALINE). It comprises three layers,

input, hidden and output. Each layer is fully connected to the next in that all the outputs

of each node are connected to each node in the next layer. Because the MADALINE

uses the signum activation function three learning Rules have been developed. The first,

Rule 1, was developed in 1962 by Ridgway (Ridgway, 1962) but it was unable to adapt

the weights between the hidden and output layer. Rule 2 improved on the first and was

developed in 1987 by Widrow et al. (Widrow, Winter, & Baxter, 1987). Rule 3 was

developed in 1988 by David Andes (Andes, Widrow, & Wan, 1990) and differs from

17

Rule 2 by the replacement of the signum in the quantizer with a sigmoid function and by

adapting the weights of all the nodes at each iteration.

2.3.5 Minsky & Pappert

Minsky and Papert’s 1969 book Perceptrons showed that there were a number of

issues with the work carried out by Rosenblatt and Widrow and Hoff. They proved that

the perceptron could never evaluate the XOR function because of its inability to

calculate parity. At the same time several non-neural network researchers (Quillian,

1968), (Evans, 1967), were demonstrating systems which could possibly emulate human

cognitive systems. These factors contributed to the decline of neural network research

in the late sixties and early seventies.

 Despite these setbacks several research groups endeavoured to create new neuron

based paradigms. In 1972 Harry Klopf (Klopf, 1972). Paul Werbos (Werbos, 1974), a

Harvard P.H.D. student, proposed, in his thesis, the back-propagation algorithm as a

new method of learning for artificial networks. Back-propagation of errors would

become the key to solving some of the problems which had plagued researchers but in

1974 it was not fully appreciated. It would not be until a paper was released in 1986 by

Rumelhart, Hinton and Williams (Rumelhart, Hinton, & Williams, 1986) that the true

power of back-propagation would be explored and explained. In it the authors

demonstrated why Minsky and Papert’s predictions about the limitations of multi-

layered perceptrons were unfounded.

2.3.6 Modern Developments

In 1982 the Finnish academic Tuevo Kohonen (Kohonen, 1982) developed self-

organising maps which use competitive unsupervised learning techniques to map the

weights to the inputs of a neural network. Complex datasets can be displayed in a

contoured format which is more easily visualised by humans.

The cognitron was proposed by Fukushima (Fukushima, 1975) as a multi-layered

self-organised neural network which used a reinforcement learning technique. It allows

the neurons in a network to become selective about which input features are more

important than others.

18

John Hopfield developed his Hopfield Network in 1982 (Hopfied, 1982) after earlier

work on the Ising model by Little and Shaw in 1974. The network is able to store

patterns and to recognise these patterns even when they are only partially applied to the

input. The Hopfield network is especially useful for character recognition.

Following on from his earlier collaborative work on back-propagation Geoffrey

Hinton together with Terry Sejinowski invented the Boltzmann machine in 1983

(Hinton & Sejnowski, 1983). It utilises a Boltzmann distribution sampling function and

is a network of neuron-like elements which are connected symmetrically. These

elements can make random (stochastic) decisions about the on/off nature of their present

state. Gradient descent has an inherent flaw in that it often is unable to find the required

solution to some problem. This flaw does not exist in the Boltzmann machine.

2.4 ANN Architecture / Backpropagation

2.4.1 Introduction

The architecture of A.N.N.s can be described by the topology of the network, the

characteristics of the nodes and the rules used in the training process. Several

architectures have been developed, each with specific capabilities to solve particular

problems. At a basic level a neural network requires an input layer, an output layer and

an intermediate hidden layer. Numeric data is presented to the network at the input

layer. Each input has a variable weight applied to it. The weights in a neural network

can be considered as being a measure of the strength of the connections between

neurons. The inputs multiplied by their weights are transferred and summed together.

After summing all of the weighted inputs together the activation function calculates the

output of each node. Depending on the system architecture this result can be transferred

directly to the output layer or used as an input to another A.N.N..

A.N.N.s are classified as follows:

Application: classifying, clustering, function approximating, predicting

Connection type: feed forward (static), feedback (dynamic)

19

Topology: single layered, multi-layered, recurrent, self-organised

Learning rules: supervised, unsupervised

Classification requires a supervised learning method where the network’s task is to

recognise patterns in the input and classify them into pre-set classes. These classes are

presented to the network as the target output. Speech and handwriting recognition and

object identification are just some of the applications of classifying A.N.N.s.

Data mining and compression applications implement A.N.N.s which have been

trained using an unsupervised learning rule. A target output is not required as the

network finds patterns in the input data and groups them into clusters.

A.N.N.s used for function approximation also implement supervised learning

techniques. Many applications in engineering and science require an approximation of a

function to describe mathematical relationships within noisy data.

Predictive systems which use data with a time factor are dynamic and produce

different outputs depending on the time scale involved.

Supervised networks are trained to adapt an input pattern so that the required output

pattern is matched. The network is said to be trained when the weights at each node no

longer need to be altered to produce the desired output. These weights are stored within

the network. An A.N.N. of this type can be used to recognise speech, classify data,

predict weather patterns, decipher handwriting and many more applications.

Unsupervised networks do not require a pre-set output pattern. Only an input dataset

is required and the network groups or clusters the input pattern.

2.4.2 Summation Function

Each input to an A.N.N. has a weight associated with it. The weights can be adapted

by the network and the architecture dictates how this is done. It is the sum of the

20

products of the weights and inputs which has a direct influence on the output. The

following equation describes the summation function.

𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 (Eqn 5)

An M.L.P. makes use of the summing function within its hidden layer. The M.L.P. is

one of the simplest yet effective A.N.N.s. and can be used to fit data, classify and

predict. It can be visualised as a cascaded set of single layer perceptrons. Only one

layer in a single layer perceptron performs any computation whereas all of the layers

beyond the input layer of an M.L.P. perform some form of computation on the weighted

inputs.

2.4.3 Activation and Output

Once the weights and inputs have been summed together they are fed into an

activation function within the hidden layer and then on to the output layer. The task of

the activation (transfer) function is to convert the node input to a node output. Node

input is the weighted sum of the previous layer’s output. Node output becomes the input

for the next layer of nodes or the output of the A.N.N. . There are four commonly used

activation functions: Unit Step, Sigmoid, Piecewise Linear and Gaussian.

The Unit Step function (Figure 7) is a threshold function in that the total weighted

input to the function either exceeds or drops short of a certain threshold value. If the

threshold is met or exceeded then the function outputs a one otherwise the function

outputs a zero.

21

Figure 7 Step (Threshold) function

The Sigmoid function can be logarithmic or tangential depending on the required

output range. The log sigmoid has a range from zero to one while the tan sigmoid’s

range is -one to +one. Figure 8 below illustrates the functions mathematically and

visually.

Figure 8 Log and Tangential Sigmoid

22

Sigmoid functions are continuous, increase monotonically, are invertible, can be

differentiated at all stages and as the net (sum of weights x inputs) approaches +/-

infinity the output from the function approaches its saturation value asymptotically.

The piecewise linear transfer function (Figure 9) produces an output consisting of line

segments. Each segment represents the total weighted output for specified thresholds.

Figure 9 Piecewise linear transfer function

23

Gaussian transfer functions (Figure 10) produce a continuous bell-shaped output. An

average input value is calculated. The output is classified depending on the input’s

proximity to the average value.

Figure 10 Gaussian transfer function

2.4.4 Feed forward and Feedback Neural Networks

A.N.N.s can be classified into two main types: feed-forward and feed-back.

Feed-forward neural networks are characterised by the following criteria:

They consist of an input layer, one or more hidden layers and an output layer. The

hidden layer is connected within the network to the input and output layers. There is no

external influence on the hidden layer.

They are fully connected in that the output from each node in each layer is connected

to every node in the succeeding layer. The signal is fed through the network in one

direction from input to output.

Connections between nodes in each layer do not exist. Each node is independent of

every other node in a particular layer.

Feed-forward neural networks use the backpropagation learning algorithm. The

A.N.N. learns to produce a desired output by manipulating the weights at each node

24

input by propagating the system error back through the network. This is achieved by

repeating the process through a series of cycles. The algorithm calculates the gradient

descent of the system to ensure the quickest decrease of the error. These A.N.N.s are

used for classification and prediction.

Competitive networks are used to cluster unseen data. They comprise a Hemming

network and a Maxnet. A Hemming network is presented with an input vector and its

goal is to calculate how closely the vector of its weights is to that input vector. Within a

Maxnet each node, which is connected to every other node, competes with the others to

find the node which has the maximum output. Combining these two networks together

creates a network which when trained forms clusters of the input data so that any unseen

data will be grouped closest to its most relevant cluster. Mortgage companies for

example use this particular type of A.N.N. to risk assess new customers before issuing a

mortgage.

Feed-back A.N.N.s, also known as recurrent neural networks (R.N.N), have a similar

architecture to feed-forward networks but the interconnectivity between nodes is

different. Each node in the hidden layer can be connected to any other node in any layer,

even to itself. At specific time intervals each node in the hidden layer activates all of its

connected nodes. The weighted sum of the inputs at the input layer and the inputs to

each node is calculated. The result is fed through an activation function. This process is

able to use the values from previous events to compute the present activity vector and

store these events in memory. R.N.N.s are used for vision systems, speech recognition

and many more applications which require time-based interpretation of data.

2.5 ANN Training Algorithms and Optimisation Techniques

Many training algorithms exist and can be grouped into different types: clustering,

Bayesian, decision tree, regression, instance-based and deep-learning. For the purposes

of this thesis I will discuss some relevant backpropagation algorithms. Training

algorithms can be implemented in batch mode or incrementally. With batch mode all of

the inputs are presented to the network before the weights are updated while in

incremental training the weights are updated after each input is presented to the

network. These algorithms perform computations which propagate back through the

network using the chain rule and partial differentiation to alter the weights at each node.

25

They all make use of a calculation of the Jacobian, gradient or Hessian(H) values.

Jacobian is the matrix of first partial derivatives, gradient is the vector of first partial

derivatives and the Hessian is the matrix of second partial derivatives.

2.5.1 Backpropagation

The error backpropagation algorithm is a major element of A.N.N.s. Although

developed in 1974 it was not fully appreciated until 1986 when Rumelhart and his

colleagues (Rumelhart, Hinton, & Williams, 1986) explained the concept fully. It is the

reason why A.N.N.s are such powerful tools today. It works by calculating the

difference or error between target and actual output of a network and propagating this

error value back through each layer and each node of the network. When the

propagation reaches the input layer the algorithm uses a differential equation to alter the

original input weights and the whole process begins another iteration forward through

the network. The process continues until the desired output has been reached to within

certain pre-set limits. Backpropagation uses partial differentiation to calculate the error

at each layer starting with the error at the output and working backwards.

2.5.2 Scaled Conjugate Gradient

Scaled Conjugate Gradient (S.C.G.) is a supervised learning algorithm developed by

Martin Møller (Møller, 1993). It is a second order Conjugate Gradient (C.G.) algorithm.

Backpropagation makes use of the gradient descent algorithm. By using partial

differentiation to calculate the steepest gradient of an error function the minimum error

can be found iteratively. During this process a line search is required to first find the

line along which the gradient is steepest and then to calculate the size of the steps to be

taken to reach the local minimum. S.C.G. manages to find the local minimum without

the need for a lengthy line search.

2.5.3 Newton’s Method

Newton’s method, known also as the Newton-Raphson method, is an algorithm which

finds the roots of a function. It utilises the first terms, up to the second order, of a Taylor

series of a function around the area of a possible root. When used within an A.N.N.,

Newton’s method finds the minima of the error function and ultimately leads to the

global minimum. Newton’s method can be described by Eqn 6 below.

26

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − (𝐻𝐻(𝑥𝑥𝑛𝑛))−1𝛻𝛻𝛻𝛻(𝑥𝑥𝑛𝑛) (Eqn 6)

where

𝑥𝑥n+1= iterative update

𝐻𝐻(𝑥𝑥n)= Hessian matrix of 2nd order derivatives of the Taylor series about point 𝑥𝑥n

𝛻𝛻f(𝑥𝑥n)= the gradient, the1st order derivative of the function at 𝑥𝑥n

This algorithm performs better than the gradient descent algorithm because it tries to

find the global minimum and not just a local minimum. If the surface of the error

function is quadratic, if it has one minimum, then large steps can be taken to find the

minimum. If the surface contains multiple minima then smaller steps can be taken while

advancing towards the global minimum. Multi-curved surfaces will produce higher

values for the second order derivatives. It is clear that movement is in the negative

direction of the gradient,−𝛻𝛻𝛻𝛻(𝑥𝑥𝑛𝑛).The major drawback of this algorithm is that the

inverse of the Hessian matrix must be calculated. This requires a lot of computation and

can slow the whole process down considerably.

2.5.4 Quasi-Newton

The Broyden-Fletcher-Goldfarb-Shanno (B.F.G.S.) algorithm is the most popular of

the Quasi-Newton methods. It is similar to Newton’s method but improves upon it by

using only the first-order derivatives of the error function, thus mitigating the

requirement to calculate the inverse of the Hessian matrix. Instead an approximation of

the Hessian matrix is calculated over several steps ensuring that the approximation

remains positive-definite. As long as the matrix is positive-definite step iterations to

find the global minimum will always be in the descent direction. In the case of large

networks with thousands of weights, storage of the approximate Hessian matrix is still

an issue because of the size of the matrix (Bishop, 1997, pp. 288-289).

27

2.5.5 Gauss-Newton

The Gauss-Newton method is another technique for circumventing the calculation of

the Hessian matrix by generating an approximation of it. In nonlinear systems, the

Hessian matrix is not always positive definite therefore the curve of the error function

may not be concave down. When this is the case Newton’s methods may iterate in the

gradient ascent direction thus moving away from the global minimum. The Gauss-

Newton method uses only the first order derivative gradient vector. The assumption is

made that around the global minimum of an error function the error between target and

actual output values averages to zero. Therefore the second order derivative values

reduce to zero and by using the outer-products of the gradient vector an approximation

of the Hessian matrix can be produced.

2.5.6 Levenberg-Marquardt

The Levenberg-Marquardt (L.M.) algorithm is another standard algorithm for solving

nonlinear problems. It is a pseudo second order function which uses two minimisation

functions, gradient descent and Gauss-Newton, to minimise the sum of squares error.

L.M. uses gradient descent methods when the error is distant from the minimum value

but switches to Gauss-Newton methods as the error function gets closer to the minimum

value. It uses an approximation of the Hessian matrix (Lourakis, 2005), a second order

square matrix of the system error with respect to the weights and biases. This

approximation is what makes the L.M. algorithm pseudo second order because the sum

of the outer products of the gradients is used to estimate the Hessian (Roweis, nd). Eqn

7 describes the L.M. algorithm (Gavin, 2013).

 [𝐽𝐽𝑇𝑇𝑊𝑊𝑊𝑊 + 𝜆𝜆𝜆𝜆]ℎ𝑙𝑙𝑙𝑙 = 𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 − ŷ) (Eqn 7)

where

𝐽𝐽 = the m x n Jacobian matrix [𝜕𝜕ŷ/𝜕𝜕p], first derivatives of the system error as a

function of the weights and biases.

ŷ = output data

𝑦𝑦 = input data

28

𝑊𝑊 = weight matrix

𝐽𝐽𝑇𝑇 = Transpose of 𝐽𝐽

ℎ𝑙𝑙𝑙𝑙 = direction of steepest descent

𝐼𝐼 = identity matrix

𝜆𝜆 = calculated from eigenvalues of the Hessian approximation, 𝐽𝐽𝑇𝑇𝐽𝐽

When 𝜆𝜆 is small a Gauss-Newton update of the weights is used but when 𝜆𝜆 is large

then a gradient descent update is performed.

2.6 Over-fitting and Generalisation

It is possible for an A.N.N. to over-fit on the training data. This means that the

A.N.N. will over-train on the input data and learn to recognise only the pattern in that

data. This is an undesirable outcome as the A.N.N. will not be able to generalise to

recognise patterns in previously unseen data. Even if the training error is small, if the

network over-fits then the error may be large for unseen data making the A.N.N.

unusable. There are several ways to avoid this issue. The most common avoidance

measure is to split the training dataset into three sections, one for training, one for cross-

validation and one for testing. The training set is used by the network to update the

weights and calculate the error gradient. During the early stages of training, the M.S.E.

for the training set generally matches that for the cross-validation set. As training

progresses the error for the cross-validation set tends to increase as the A.N.N. begins to

over fit the data. If the difference in the training and cross-validation error exceeds a

certain threshold a set number of times then the training is stopped and the point where

the lowest error difference occurred is taken as the point where the A.N.N. was

optimally trained. The test set is used in the training process but the error is only used as

an indicator of acceptable data spread across the three sets.

Another way to avoid over fitting is to make the A.N.N. just large enough to map the

data. It is difficult to design an adequate A.N.N. until some training has been completed.

Generally several different sizes of networks are trained before the design is finalised. If

29

the number of samples in a training set is large compared to the number of parameters

then over-fitting will not be a concern. It is possible to increase the training set to

mitigate against over-fitting.

Yet another method to avoid over-fitting is regularisation. The main goal of a neural

network is to try and fit a smooth weight curve through the data and not to over-fit by

altering the weights so that the curve fits the data exactly. Regularisation involves

altering the weight vector by adding the sum of individual weights to the error

calculation thus penalising weights which are large. L1 regularisation adds the sum of

the absolute weight values and L2 regularisation adds the sum of the squared weight

values. Trial and error dictates which form of regularisation should be used. L1 does not

work well with training algorithms which use calculus to estimate the gradient and L2

can be applied to any form of training algorithm. The overall effect of regularisation is

to reduce an A.N.N.’s tendency to over-fit the training data (McCaffrey, 2015).

2.7 ANN Implementation

2.7.1 Data Mapping

This research proposes using A.N.N.s to aid in the landing of a U.A.V. on a ship. To

this end two different problems were tackled. The first was to classify a dataset of

coordinate values into a dataset of orientations. The second was to classify a dataset of

orientations into a dataset of optimal landing times. The configuration used to solve the

first problem was a two-layer feed-forward network with hyperbolic tangent (tanh)

sigmoid transfer function in the hidden neurons and linear transfer function in the output

neurons. This configuration will fit datasets of numeric inputs and a set of desired

numeric outputs. The training algorithm chosen was the Levenberg-Marquardt

backpropagation algorithm. Figure 11 is a representation of the system.

Figure 11 A.N.N. configuration for mapping input to target output

30

The system comprised twenty-four input neurons, fifteen hidden neurons and four

output neurons.

2.7.2 Pattern Recognition

A two-layer feed-forward network, with sigmoid hidden and output neurons. Trained

using scaled conjugate gradient backpropagation algorithm.

Figure 12 A.N.N. configuration to classify vectors

The system comprised twenty input neurons, fifteen hidden neurons and one output

neuron.

2.8 Conclusion

This overview of A.N.N.s serves to illustrate the many types of systems which have

been developed and the multitude of back-propagation optimisation algorithms which

can be applied to them. It has shown how A.N.N.s can be applied to the proposed

research question as they have the ability to map patterns in non-linear data and to

classify these patterns. The review has also shown that the A.N.N.s deployed to model

the orientation of a ship during several sea-states need not be overly complex.

Deployment of standalone A.N.N.s to tackle separate phases mitigated the requirement

for cascaded systems and they were trained quickly and reliably with a high degree of

accuracy.

Cross-validation is a method of monitoring the deviation between a training set

M.S.E. and the M.S.E. of a subsample of the same training set. It is a mechanism to

allow an A.N.N. to be trained by halting the training if the M.S.E. deviation exceeds a

31

threshold. Throughout the training process cross-validation was employed to ensure the

trained A.N.N. would be able to generalise and not over-fit on the training data.

32

Chapter 3 The implementation of Artificial Neural

Networks and Other Methods for Vehicle Control
3.1 Introduction

Autonomous control of a vehicle is a long-established technology. In 1914, Lawrence

Sperry demonstrated an autopilot system for aviation which utilised gyroscopes and

attitude sensors to maintain the aircraft’s heading and altitude via hydraulically

operated rudder and elevators. As part of their demonstration the pilot and mechanic

walked on the wings while the plane flew itself (Keefe, 2014). In 1920 the motor tanker,

J.A. Moffett jnr. became the first ship to use an autopilot (O'Callaghan, 2011). In 1922

the Russian American mathematician Nicolas Minorsky published a paper on the

stability of auto-piloted ships (Minorsky, 1922). In 1947 a United States Air Force

(U.S.A.F.) C-54 aircraft became the first auto-piloted vehicle to take off, complete a

transatlantic flight and land completely unaided by the pilot (Kirchman, 2013).

The advent of computers heralded a new era in autonomous vehicle control. Since the

1940’s, when the McCullogh-Pitts neuron was unveiled, A.N.N.s have been trained to

replicate human activities often surpassing their human counterparts. The phrase

machine learning was coined to describe the process. A recent example of computers

exceeding human capabilities is in the DeepMind company whose engineers wrote a

computer algorithm that learned to play forty-nine arcade games. “The computer became

skilled enough to beat a professional human player” (Gibney, 2015) in more than fifty percent of

the games. In the past, machine learning, a branch of A.I., often required greater

computing power than was available but with today’s high speed central processing

units (C.P.U.s) complex machine learning algorithms can be deployed. Deep-learning,

which is a separate branch of A.I., utilises unsupervised learning techniques to enable

A.N.N.s to be trained using large training datasets. I.B.M. recently released an article

detailing a new microchip they have developed specifically for deep-learning solutions

such as object recognition from frames of live video. The chip they developed consumes

a fraction of the energy of conventional C.P.U.s. Although not directly comparable,

tests have shown this chip to be approximately one hundred times faster than any of

today’s supercomputers (Merolla, et al., 2014, p. 671) when tasked with the same

problem.

33

Today companies like Google and Facebook use deep learning algorithms to sift

through huge volumes of data to find patterns of human behaviour. Difficult processes

like speech and face recognition are now commonplace in machines, SIRI in Apple

iPhones (Apple, 2015) for voice recognition and Facebook uses face recognition to tag

photos (Facebook, 2015). A.N.N.s play a major part in the deployment of these

technologies into our everyday lives. Augmented by advances in laser and other optical

technologies, A.N.N.s are an excellent tool for autonomous vehicle control because of

their ability to recognise and define trajectories along which vehicles should travel

(Pomerleau, 1989), (Dierks & Jagannathan, 2010), (Nguyen & Widrow, 1989).

A.I. is set to become even more conspicuous in society with the release of Google

cars (Metz, 2015), Tesla cars (Chang, 2015), Formula E Roborace (Burgess, 2015),

Mercedes-Benz F105 (Mercedes-Benz, 2015) and obstacle avoiding drones (Darrow,

2015) which all employ A.N.N.s to aid the control of vehicles. Even into the future and

on different planets humans are endeavouring to implement A.I. to help navigate

landing vehicles during the proposed 2018 ExoMars mission (Vago, Lorenzoni,

Calantropio, & Zashchirinskiy, 2015).

3.2 Analysis

3.2.1 Vehicle control using Artificial Neural Networks.

This section examines the different uses of A.N.N.s for the control of vehicles. A

description of the seminal works follows. The A.N.N.s’ roles varied in these

experiments, from control to image processing to simulation and trajectory mapping.

3.2.1.1 ALVINN Autonomous Vehicle in a Neural Network

One of the earliest successful attempts to autonomously drive a vehicle controlled

only by neural networks was the ALVINN project at Carnegie Mellon University in

1989 (Pomerleau, 1989). ALVINN is an acronym for Autonomous Land Vehicle In a

Neural Network. Pomerleau developed a system of training a three-layer back-

propagation A.N.N. using images of simulated roads. The input layer had 1217 inputs

which comprised data from a laser range finder and data from a video camera. The

34

hidden layer had 29 units and the output layer had 46 units. The output consisted of a

vector of values, mostly zeros, but with a peak numeric value at the centre and

decreasing values left and right of this. The middle peak value represented the keep

straight command while the gradient of values either side represented the sharpness of

turn required to centre the vehicle. The trained A.N.N. learned to differentiate between

roads and non-road sections of images and with the help of a feedback element was able

to learn when the road was darker or lighter than the off-road sections. The A.N.N.

could learn to differentiate between roads and non-roads within half an hour. This was

far quicker than similar vision based research in the same field which took months of

algorithm development and parametric tuning.

Ultimately the trained A.N.N, was able to control a modified vehicle along a roadway

for 400 metres at a speed of 0.5 m/s (~1.8 km/h). It proved that an A.N.N. could be

trained to control a vehicle by learning dynamically no matter what the input system

was and combining real images with simulated images helped to prevent over-learning.

3.2.1.2 Neural Networks for Self-Learning Control Systems

Another much cited use of A.N.N.s for vehicle control is the truck reverser simulation

developed by Nguyen and Widrow (Nguyen & Widrow, 1989). This is another

implementation of an A.N.N. which is used to map a non-linear dynamic system. In this

case one A.N.N. learned the characteristics of a truck and trailer’s dynamics and

emulate them and another A.N.N. learned to control the emulator and steer a reversing

truck. The research team used Adaptive Linear Networks (AdaLine), in a two-layer

configuration for both emulating and controlling the truck and trailer. The system

learned to “solve sequential decision problems” (Nguyen & Widrow, 1989, p. 22).

3.2.1.3 Adaptive Nonlinear Controller Synthesis for UAV

Another neural network system for U.A.V. flight control was developed by Prasad

and his research group in the Georgia Institute of Technology in 1999. Developed as an

alternative to expensive, yet proven, traditional flight control systems the team used

neural networks to address the non-linear issues associated with developing new

35

aircraft. As with previous research N.D.I. combined with A.N.N.s is used to “compensate

an imperfect dynamic inversion model” (Prasad, Calise, Pei, & Corban, 1999, p. 119). A non-

linear simulation model of a Yamaha R-50 unmanned helicopter was used to create a

dataset of flight dynamics. The inverted data was fed into an M.L.P. neural network.

The results of this research illustrated that neural networks again proved to be a fast-

learning and inexpensive tool for “direct adaptive control of non-linear systems” (Prasad,

Calise, Pei, & Corban, 1999).

3.2.1.4 Autonomous Helicopter Hover Using an ANN

Many more implementations of A.N.N.s for U.A.V. flight control have been

researched and successfully implemented. Buskey, Wyeth and Roberts developed a

system for transmitting hover commands to a U.A.V. (Buskey, Wyeth, & Roberts,

2001). A feed-forward A.N.N. using a back-propagation supervised learning algorithm

was trained to map the relationship between the Inertial Navigation System (I.N.S.) of

the aircraft and the control actuators. They successfully trained the A.N.N. to control the

U.A.V.’s hover.

3.2.1.5 Autonomous Flight Control for UAV using Neural Networks

Yet another neural network controlled flight system for U.A.V.s was investigated by

Nakanishi et al. in Kyoto University in 2002. By employing trained neural networks in

combination with online (real-time) neural network training a highly reliable control

system was developed. The team was tasked with improving on the linear Proportional

Derivative (P.D.) controller for the Yamaha RMAX U.A.V. to ensure more reliable

autonomous flight. A non-linear system with n degrees of freedom can be described by

the following equation:

𝑦̈𝑦 = 𝑓𝑓(𝑦𝑦, 𝑦̇𝑦,𝑢𝑢)

where 𝑓𝑓 is a function describing the system

36

𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦̇𝑦 are state variables and 𝑢𝑢is the control variable

𝑈𝑈 represents pseudo-control variables so that

𝑈𝑈 = 𝑓𝑓(𝑦𝑦, 𝑦̇𝑦,𝑢𝑢)

If 𝑓𝑓 is a known and invertible function then the map between control and output can

be linearised by the following equation:

𝑢𝑢 = 𝑓𝑓−1(𝑦𝑦, 𝑦̇𝑦,𝑈𝑈)

The purpose of this research was to train a neural network to estimate a function

which was invertible but unknown. Once trained the A.N.N. was employed “as the

controller for linearizing the plant” (Nakanishi, Hashimoto, Hosokawa, Sato, & Inoue, 2002,

p. 781) and so the U.A.V.s power system could be controlled linearly when reacting, for

example, to any sudden changes in wind-speed. Four independent neural network

controllers (elevator, aileron, yaw and altitude) were trained and tested. The methods

developed in the research improved the reliability of autonomous U.A.V. flight and also

“can be easily applied to general control systems design” (Nakanishi, Hashimoto, Hosokawa,

Sato, & Inoue, 2002, p. 782).

3.2.1.6 Neural Network Based Control of a Quadrotor UAV

Controlling the take-off, landing and hovering of a quadrotor U.A.V. using an A.N.N.

and deploying it in a microcontroller was investigated by Dunfied, Tarbouchi and

Labonte in 2004. By Flying the U.A.V. manually and recording the output from several

sensors an input training dataset was created. The output training dataset consisted of

the human pilot’s commands. This process of data collection is similar to Singleton’s,

discussed earlier. Although autonomous hover was not physically achieved, the team

concluded that improvements in sensor data and the inclusion of height control data that

“autonomous hovering would be possible” (Dunfied, Tarbouchi, & Labonte, 2004, p. 1548).

37

3.2.1.7 Auto-Landing Guidance System for Smart UAV

Neural networks have also been applied to the complex field of automatic Smart

U.A.V. landing (Min, Shin, Tahk, Kim, & Kim, 2006). In this case the research

focussed on auto landing a tilt-rotor aircraft by controlling the aircraft on a

predetermined flight path. A nonlinear Smart U.A.V. simulation model was developed.

Utilising a Sigma-Phi Neural Network (S.P.N.N.) adaptive control signals were input

and a precise trajectory tracking system was developed.

3.2.1.8 UAV Modelling by Supervised Neural Networks

San Martin (San Martin, Barrientos, Gutierrez, & del Cerro, 2006) and his colleagues

developed a procedure for dynamically identifying complete systems, like the flight

system of a U.A.V., using supervised neural networks. They simulated a U.A.V.’s flight

characteristics. This was achieved by training a separate neural network for each stage

of flight: take-off, landing and flying. Using real data from a radio controlled helicopter

they created a dataset and trained a network to simulate pitch, roll and yaw and used this

data to train another network to simulate the aircraft’s position. Comparing training

using M.L.P. and Radial Basis networks highlighted how different elements of flight

required different networks to optimise simulation. They concluded that neural

networks are a “valid tool for system identification” (San Martin, Barrientos, Gutierrez, & del

Cerro, 2006, p. 2502).

3.2.1.9 Dual Neural Network Controller for UAV

Similar research was completed by Puttige, Anavatti and Samal using a Dual Neural

Network (D.N.N.) to create a U.A.V. controller. They concluded that the D.N.N. is

more accurate and faster than a conventional P.I.D. controller (Puttige, Anavatti, &

Samal, 2009).

38

3.2.1.10 Neural Network Control of Quadrotor UAV Formations

Another interesting use of A.N.N.s to control U.A.V.s was presented in research

carried out by Dierks and Jagannathan in 2009. Based on spherical coordinates they

developed a control system where multiple U.A.V.s could follow one leader U.A.V..

The A.N.N. was trained to learn all of the dynamics of a U.A.V. including aerodynamic

friction. They developed a formation control law using A.N.N.s “which allows each follower

to track its leader without the knowledge of dynamics” (Dierks & Jagannathan, 2009, p. 2996).

3.2.1.11 Output Feedback Controller of UAV using Neural Networks

Dierks and Jagannathan also developed a U.A.V. nonlinear controller using A.N.N.s.

Several networks were trained separately to deal with the various aspects of the

U.A.V.’s flight patterns. Four control inputs were used to train the A.N.N. and the

aircraft’s six D.o.F. were successfully mapped. Again the controller outperformed

conventional linear controllers (Dierks & Jagannathan, 2010).

3.2.1.12 Neural Network Optimisation for Autonomous Auto-rotation of UAV

Autonomous autorotation using a Nonlinear Model Predictive Controller (N.M.P.C.)

coupled with a Recurrent Neural Network (R.N.N.) to handle nonlinear optimisation

was achieved by Dalamagkidis and Valavanis in 2011. Auto-rotation in a rotorcraft

occurs when it loses power and is forced to descend using only the air currents

generated by its rapid descent. These air currents spin the rotors and a cushioned

landing can be achieved by raising the collective as the aircraft nears the ground thus

reducing the sink rate. Having trained the A.N.N. the researchers concluded that an

A.N.N. assisted autonomous auto-rotation could safely land a U.A.V. regardless of the

U.A.V.’s initial state and the amount of noise present (Dalamagkidis & Valavanis,

2011).

39

3.2.1.13 Optimised Fuzzy Logic Training of ANN for Autonomous Robotics

Using optimised fuzzy logic training of A.N.N.s these researchers (Alzaydi,

Vamaraju, Mukherjee, & Gorchynski, 2011) successfully trained an autonomous

wheeled vehicle to steer itself around two separate tracks. They proved that it is possible

to use a fuzzy logic controller to train an A.N.N. in real-time and that real-time

autonomous navigation could be achieved with minimal computational power and

without complex control strategies.

3.2.1.14 Autonomous Radio Controlled Car

David Singleton also developed a neural network vehicle control system (Singleton,

2013). He used a child’s remotely controlled car and manipulated the hand-held

controller to accept signals from an Arduino Uno. To train the network he created a

dataset. This was done by controlling the car himself and using an android phone to

transmit images to a pc to record the path taken along a track made up of A4 sheets. The

images were fed wirelessly to the pc. The brightness intensity value of 25345 pixels

from each image was stored sequentially. These were used at a later stage as input to the

A.N.N.. The actual network architecture he used was a Convolution Neural Network

(C.N.N.). C.N.N.s are similar to an M.L.P. except they have sub-sampling layers prior

to the fully connected section. These networks are often used for image recognition

because the sub-layers can extract basic visual features and recombine these in the

upper layers (Hijazi, Kumare, & Rowen, 2015). The hidden layer comprised sixty-five

units and the output layer consisted of four outputs; left, right, forward and reverse.

Once trained the A.N.N. was deployed to drive the car along a new track. The actual

control mechanism relied on the Arduino board to receive a signal from the A.N.N. and

transmit the correct motion command to keep the car within the track. Figure 13 below

shows the RC car driving itself along a track, the image on the left is from the camera’s

perspective.

40

Figure 13 Neural Network controlled car

Source: http://blog.davidsingleton.org/nnrccar/ (Singleton, 2013)

This project demonstrates the ability of A.N.N.s to quickly learn the dynamics of

vehicular motion.

3.2.1.15 Adaptive Neural Network for Quadrotor UAV

The control of non-linear systems as if they were linear systems is a process known as

Non-Linear Dynamic Inversion (N.D.I.). Flight dynamics data is inverted and a system

of countering the non-linearities is employed. Using neural networks to counter non-

linearities without the need for apriori knowledge of the full flight control system has

brought them into the spotlight (Lakshmikanth, Padhi, Watkins, & Steck., 2014). An

adaptive neural network system was created by Hana Boudjedir and his colleagues to

stabilise a quadrotor U.A.V. while under the influence of a sinusoidal disturbance

(Boudjedir, Yacef, Bouhali, & Rizoug, 2012). A neural network was used to adaptively

cancel in-flight inversion errors. Using two Single Hidden Layer neural networks

(S.H.L.N.N.) in parallel any disturbance could be countered. This was achieved by

feeding the disturbance data through one supervised learning S.H.L.N.N. and this could

be equalised by another unsupervised learning S.H.L.N.N.. The findings of the research

were tested by simulating Quadrotor control and they obtained high level performance

http://blog.davidsingleton.org/nnrccar/

41

and zero weight drift.

3.2.2 Machine Vision Control Systems

Autonomous vehicles often rely on machine vision techniques for obstacle avoidance

(Turk, Morgenthaler, Gremban, & Marra, 1988), range finding (Sheng, Chen, Xie, Bai,

& Yang, 2008), road-edge detection (Kong, Audibert, & Ponce, 2010), dataset creation

(Singleton, 2013) and lane discipline (Farooq, Gu, Amar, & Asad, 2013). Machine

vision has also been successfully implemented in the control of U.A.V.s. The following

section discusses this in detail.

3.2.2.1 3D Vision Based Landing Control of a Small Scale U.A.V.

Using binocular 3D vision Yu et al. researched the autonomous landing of a U.A.V..

They were able to measure the range between a U.A.V. and a landing pad. They were

also able to measure the height above the pad using 3D vision and a plane-fitting

algorithm which they developed. A controller handled the two-stage landing

manoeuvre. They successfully landed the U.A.V. using this methodology (Yu, Nonami,

Shin, & Celestino, 2007).

3.2.2.2 Autonomous Landing & Ingress of M.A.V. using Monocular Vision

The problems associated with M.A.V.s entering buildings and navigating through

them was addressed by Roland Brockers, Patrick Bouffard and their colleagues at

Caltech and Berkeley. This research tackled the issues of “vision based autonomous landing

and ingress using a camera for two urban scenarios” (Brockers, Bouffard, Ma, Matthies, &

Tomlin, 2011, p. 1). To detect targets and estimate the M.A.V. motion the team

employed multiple homography decomposition. Homography is an imaging analysis

method where similar points on a target are compared from different perspectives, two

in this case, and both images are rendered together to yield an estimation of perspective

(Criminisi, Reid, & Zisserman, 1997). Figure 16 illustrates the process of feature

tracking.

42

Figure 14 Homographic target detection: (a) multiple homography detection when landing (b)

detection of an opening for ingress to a building

Source: (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 4)

Using a monocular camera the team successfully autonomously landed an M.A.V. on

an elevated platform and also enabled the M.A.V. to autonomously enter a building

through an opening of 60x60cm.

43

Figure 15 Once airborne the (a) autonomous landing and (b) autonomous ingress algorithm

functions in three separate stages: “Detection, Refinement, and Approach”

 (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 5)

Source: Adapted from (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 5)

44

3.2.2.3 On-board Vision System for Autonomous Control of M.A.V.

Monocular on-board vision was used for orientation estimation to find the “H” of a

landing pad in a noisy environment and track it. The data from the orientation

estimation was input to a controller which autonomously landed a Micro U.A.V.

(M.A.V.). Processing up to sixty frames per second the research team’s software was

able to find the landing area and calculate the M.A.V.’s relative orientation to it, Figure

14.

Figure 16 M.A.V. in hover position and “H” tracking

Source: (Yang, Scherer, Schauwecker, & Zell, 2013)

Orientation calculations were done using projective geometry. From a hover position

the M.A.V. successfully landed autonomously. The same group of researchers also used

on-board monocular vision and the Simultaneous Localisation and Mapping (S.L.A.M.)

algorithm to enable an M.A.V. to navigate to a predefined helipad within the S.L.A.M.

system map and land on it. Figure 15 illustrates the trajectory of the M.A.V. from take-

off to landing. The landing area is on the left and towards the back of the map.

45

Figure 17 Take-off, flight trajectory and landing

Source: (Yang, Scherer, Schauwecker, & Zell, ND)

Autonomous flight and landing of an M.A.V. was shown to be possible and landing

area orientation estimation was verified by an external tracking system (Yang, Scherer,

Schauwecker, & Zell, ND).

3.2.2.4 Autonomous take-off, tracking and landing of a UAV on an Unmanned

Ground Vehicle.

Yet another implementation of monocular vision based control on a U.A.V. was

carried out by Hui et al (2013). They successfully tracked and landed the U.A.V. on an

Unmanned Ground Vehicle (U.G.V.) using vision-based techniques. Fundamentally,

while using a monocular on-board camera they were able to find a circular shape on the

U.G.V., track it and eventually land on it (Hui, Yousheng, Xiaokun, & Shing, 2013).

3.2.2.5 Visual Autonomous Ship Board Landing of a Vertical Take-Off and Landing

(V.T.O.L.) Unmanned Aerial Vehicle.

Landing a U.A.V. on a ship using an on-board camera as the main sensor was

successfully completed by Sanchez-Lopez et al in 2013. A robotic platform was

46

employed to simulate several sea-states (see Table 6 in Appendix A for a table of sea-

states). Image processing of the video feed from the colour camera on board allowed the

team to measure the helipad pose with respect to the camera. The main goal of this

research was to develop a robust pose measurement system using an on-board colour

camera as the only sensor. This was successfully achieved (Sanchez-Lopez J. L.,

Saripalli, Campoy, Pestana, & Fu, 2013).

3.2.2.6 Autonomous Approach & Landing of UAV Using Monocular Cameras

 Autonomous approach and landing was successfully deployed by Dotenco et al., again

with the aid of monocular vision. One forward facing camera initially detects a landing

pad and the distance between it and the U.A.V. is calculated. Once the U.A.V. is within

range of the landing pad a downward facing camera is used to detect the landing area

and the pose of the pad with respect to the U.A.V. is calculated. The U.A.V. then

autonomously lands on the pad. All of the image processing was completed in real-time

(Dotenco, Gallwitz, & Angelopoulou, 2015).

3.2.2.7 Landing Site Targets and Constraints for ExoMars 2016 Mission

Image processing of landing sites will be implemented in 2016 on Mars when the

ExoMars mission will attempt to land a 600kg (Portigliotti, Dumontel, Capuano, &

Lorenzoni, p. 1) demonstration craft in preparation for a 2018 attempt to land two rover

modules. A stereo camera and photoclinometry techniques coupled with high resolution

image processing will be used to assess the suitability of landing areas as the landing

module approaches the Martian surface (Portigliotti, Dumontel, Capuano, & Lorenzoni,

ND). Figure 18 illustrates a proposed descent procedure for the 2018 mission. This is

yet another example of vision based landing zone assessment.

47

Figure 18 ExoMars 2018 proposed descent procedure

Source: (Vago, Lorenzoni, Calantropio, & Zashchirinskiy, 2015, p. 539)

3.2.2.8 Landing Assistance & Evaluation using Image Processing

Autonomous landing of a U.A.V. on a random landing site using computer vision

techniques was investigated by Deshmukh and Mali in 2015. Having determined the

altitude of the U.A.V. the landing areas under investigation were segmented into blocks.

Through a process of edge detection within images of feasible landing areas and

grouping of features like grass, water etc. the researchers were able to identify suitable

landing areas from the images alone (Deshmukh & Mali, 2015).

48

3.2.3 Algorithm Based Control Systems

Many areas of research have employed algorithms to control unmanned vehicles. This

section contains a brief overview of some of the relevant research.

3.2.3.1 Trajectory tracking for UAVs with velocity & heading rate constraints

Employing a Control Lyapunov Function (C.L.F.) Ren and Beard (2004) tackled “the

problem of constrained nonlinear trajectory tracking control” (Ren & Beard, 2004, p. 706) of

U.A.V.s. Using an input constrained model of a U.A.V.’s kinematics they developed a

tracking C.L.F.. Through simulation they applied control strategies, which guaranteed

accurate tracking of the U.A.V. (Ren & Beard, 2004).

3.2.3.2 Autonomous UAV landing system design on a moving platform

For his Ph.D. research Esmailifar (2009) developed an adaptive control system for the

safe landing of a U.A.V.. Tracking a moving platform and recognising a landing area on

it was controlled by a two-stage process. A supervisory stage recognised the landing pad

and the tracking was controlled and error compensated by a State Dependent Ricatti

Equation (S.D.R.E.). Computer simulation was once again used to verify the complete

process and yielded satisfactory tracking performance during the landing phase

(Esmailifar & Saghafi, 2009).

3.2.3.3 Autonomous shipboard landing algorithm for UAVs

Shin, You and Shim proposed an algorithm for autonomous U.A.V. shipboard

landing. The algorithm comprised two section: the first part is a controller which is

augmented by Time-Delay Control (T.D.C.) and the second is the guidance law.

Unknown elements of the system model as a result of external disturbances and U.A.V.

velocity changes are compensated for by T.D.C.. Crash avoidance and crosswind effects

are handled by the guidance law. The team used real-time Matlab simulations to

validate their algorithm. The results proved that the process exhibited more superior

49

tracking than a conventional P.D. controller. Repeated accurate landing was achieved

(Shin, You, & Shim, 2013).

3.2.3.4 Quaternion-based trajectory tracking control of UAVs using command filtered

back stepping

Representing U.A.V. orientation with quaternions, Zhao et al., developed a tracking

system using “the command filtered back stepping technique” (Zhao, Dong, & Farrell, 2013, p.

1018). Filtering the orientation through a second-order filter computed the angular

velocity of the U.A.V. without the need to differentiate ensuring that the smallest

angular path was always followed. Through simulation the team showed that the back

stepping technique requires a smaller yaw rotation for trajectory tracking when vector-

based filtering was compared to quaternion-based filtering (Zhao, Dong, & Farrell,

2013).

3.2.3.5 UAV Heading Optimal Tracking Control using Online Kernel-Based HDP

Algorithm

Tan et al. (2014) proposed an alternative to neural network based U.A.V. control

methods by implementing Kernel-Based Heuristic Dynamic Programming (K.H.D.P.)

for optimal heading tracking. By modelling the U.A.V. flight dynamics and through a

process of integrating kernel methods and Approximate Linear Dependency (A.L.D.)

analysis the kernel methods produced superior generalisation results than M.L.P. neural

networks (Tan, Liu, Guan, & Luo, 2014).

50

3.3 Conclusion

The analysis of the technologies employed for vehicular control in the preceding

sections demonstrates how important A.N.N.s are as a stand-alone control tool and as an

element in systems which employ sensor technology. A.N.N.s have proven to be

reliable and repeatedly accurate when trained using data specifically tailored to

problems such as road-edge detection, proximity calculation, object avoidance,

trajectory mapping and aircraft plant modelling.

Similar approaches to the methodology used in this research have been found but

none have implemented a methodology in the same phased manner incorporating

machine vision, orientation calculation and landing zone attitude prediction.

Although a trained A.N.N. is a reliable control tool recent research has also shown

how deep neural networks (D.N.N.) can misclassify images when presented with data

which has been mechanically altered especially in the case of image recognition (James,

2014). This is as a result of directly manipulating the data which, although

imperceptible to humans, produces errors in the output of a trained A.N.N.. This is a

useful exercise which demonstrates some limitations of A.N.N.s but it also shows that

this data manipulation does not occur naturally and must be done intentionally in order

to create false negative output values. A more recent study demonstrated D.N.N.s

recognising, with high confidence, unrecognisable “fooling images” (Nguyen, Yosinski, &

Clune, 2015, p. 14).

51

Chapter 4 Technical and Mathematical Background
4.1 Introduction

Several technical and mathematical constructs had to be employed throughout this

research. The following sections discuss the main constructs briefly.

Quaternions were employed instead of Euler angle to represent rotations. It was

discovered early into this research that discontinuities around 00 for Euler angles made it

impossible to train an A.N.N. to the required accuracy but once quaternions were used

to measure rotation an A.N.N could be trained to a high degree of accuracy.

Without access to a seagoing vessel from which data could be retrieved to form

training datasets for the A.N.N.s it was decided to create simulations which would yield

comparable datasets. Simulations of real-world sea and swell states were devised and

interacted with a scale model of a naval vessel. Section 4.3 discusses the characteristics

of sea motion.

It was decided to pursue an orientation calculation method which required

ascertaining the coordinates of the vertices of a typical landing pad “H”. To this end a

corner recognition algorithm was employed. Section 4.4 explains the mathematics

behind such an algorithm.

4.2 Quaternions

In 1843 the Irish mathematician Sir William Rowan Hamilton discovered quaternions

(Hamilton, 1844). He had tried for years to find a three dimensional analogue to how

complex numbers represent two dimensions so elegantly. By adding another term,

complex numbers could be used to represent three dimensions but the multiplication of

these two numbers together was not resulting in any meaningful geometrical

interpretation.

In classical complex number theory a 2D point or vector can be described in its polar

form,= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟Ɵ + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟Ɵ𝑖𝑖, where 𝑟𝑟 is the length of the vector and Ɵ is the angle between

the vector and the positive real axis. In general multiplying one polar expression of a

vector by another gives,

52

𝑟𝑟1(cos𝛳𝛳 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).𝑟𝑟2(cos 𝛼𝛼 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)=𝑟𝑟1𝑟𝑟2(cos(Ɵ + α) + 𝑖𝑖(sin(Ɵ + α)))

If we allow one of these to be a unit vector we could see it as a representation of a

rotation, and multiplication clearly rotates the other vector by the appropriate angle.

For example, taking the special case when 𝛳𝛳 = 900, multiplying any vector by the

vector 𝑐𝑐𝑐𝑐𝑐𝑐900+𝑠𝑠𝑠𝑠𝑠𝑠900𝑖𝑖, which is simply i, has the effect of rotating the vector by 900

counter clockwise as can be visualised on the left-hand illustration of Figure 19.

The illustration on the right in Figure 19 attempts to illustrate the difficulties

Hamilton faced, specifically the need for a solution for the product ij.

Figure 19 Visualisation of 2D and 3D rotation prior to Hamilton’s discovery of quaternions

53

The 3D space he was experimenting with had a real axis and two imaginary axes, i

and j. Because i2=-1, when multiplying 2D vectors together, every time an i2 is

encountered it can be replaced by -1. For example, 5+3i multiplied by i results in a

vector 5i+3i2. Replacing i2 with -1 produces the result -3+5i, a new vector perpendicular

to the original. Visualising 3D vectors requires using a third axis j. Multiplication of 3D

vectors produces products containing ij combinations. So -3+5i multiplied by j results in

a vector -3j+5ij. Hamilton had to find a way to replace the product ij so his eureka

moment came when he realised that another axis k, a fourth dimension, was the

solution. His famous formula for quaternion multiplication is given by

 i2= j2 = k2 = ijk = -1. If i2 = -1 then ii = -1 so i(jk) = -1. Figure 20 illustrates how the

products of i,j and k are related.

Figure 20 Relationships between i,j and k.

Multiplying two 3D vectors results in sixteen elements, three squares containing i2,j2

and k2 and six products containing ij, ik, ji, jk, ki and kj. The other seven elements

contain one scalar square and six scalar products containing i, j and k. The squares of i, j

and k can be replaced by -1 and any combination of i, j and k can be replaced by a

single value of i, j or k. This results in a new 3D vector of the form 𝑤𝑤 + 𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑘𝑘

where 𝑤𝑤 is a scalar and 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 are unit vectors along the axes i,j and k respectively

(Hamilton, 1844, p. 5). Hamilton’s work paved the way for new solutions in problem

54

solving in mathematics and physics in three dimensions which were unachievable up to

that point.

A quaternion is generally expressed as follows

𝑞𝑞 = 𝑤𝑤 + 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 + 𝑧𝑧𝑧𝑧 𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ (Eqn 8)

But can also be expressed as a scalar and vector pair

𝑞𝑞 = [𝑤𝑤, 𝑣𝑣]𝑤𝑤 ∈ ℝ,𝑣𝑣 ∈ ℝ3 (Eqn 9)

The latter form can be used to illustrate how quaternions can be manipulated in a

similar way to complex numbers. For example, the sum of two quaternions is simply the

separate addition of the scalar part and the addition of the vector part.

𝑞𝑞𝑏𝑏 + 𝑞𝑞𝑎𝑎 = [𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑏𝑏 , 𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑏𝑏] (Eqn 10)

Subtraction only requires changing the signs in the above expression. Multiplying

two quaternions together results in a combination of scalar products, a vector dot

product and a vector cross product. So,

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏 = [𝑤𝑤𝑎𝑎 , 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏 , 𝑣𝑣𝑏𝑏] = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑣𝑣𝑎𝑎.𝑣𝑣𝑏𝑏 , 𝑤𝑤𝑎𝑎𝑣𝑣𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑎𝑎 𝑥𝑥 𝑣𝑣𝑏𝑏] (Eqn 11)

A detailed treatment of Eqn 11 can be found in Appendix A.

When Hamilton made his discovery in 1843 he could not have known how his

formulae could be utilised in the future. With the advent of space travel in the 1960’s

and computer graphics and gaming in the 70’s and 80’s a need arose to describe

rotations in 3D by some method other than Euler angles, which suffer from gimbal lock.

Gimbal lock can occur when two axes align, which can occur when certain calculations

are made. Avoiding gimbal lock was critical to rocket telemetry systems (Hanson, 2006,

p. 19). Quaternions do not suffer from gimbal lock so they began to be adopted as the

main method to describe rotation in 3D and are now used in aviation (Phillips, 2004, p.

867), space exploration (Markley & Crassidis, 2014, p. 46) and gaming graphics (Dunn

& Parberry, 2012, p. 247). A rotation quaternion is described by the following equation.

𝑞𝑞 = �𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
2

, 𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
2
� (Eqn 12)

55

where

𝜃𝜃
2
, half the angle of rotation

𝑣𝑣, a unit vector with x,y and z elements (the axis of rotation)

Only unit quaternions are used to describe rotations. Rotation of an object by a

quaternion can be visualised as placing a unit sphere around the object with both the

object and the sphere centred at the origin. The vector part of the quaternion forms an

axis through the origin perpendicular to the vector of the point on the object to be

rotated and the scalar part is the half-angle of rotation around this axis.

The inverse of a quaternion is the conjugate divided by the square of the norm and the

quaternion is a unit entity so the square of the norm equals one (Eqn 13).

𝑞𝑞−1 = 𝑞𝑞∗

|𝑞𝑞|2
 (Eqn 13)

and |𝑞𝑞|2 = 1

so 𝑞𝑞−1 = 𝑞𝑞∗

The quaternion inverse equals the quaternion converse. Because of the nature of

quaternions a vector is first rotated by the quaternion conjugate and then by the

quaternion so a vector b is rotated to a new orientation b′ as described in Eqn 14.

𝑏𝑏′ = 𝑞𝑞𝑞𝑞𝑞𝑞−1 (Eqn 14)

56

The rotation quaternion is described in half-angle terms precisely because of the

action in Eqn 14. To preserve the length of the vector after rotation it is rotated twice,

once by a unit quaternion for half a rotation and then with the same rotation angle by the

quaternion inverse (conjugate) (Van Oosten, 2012). This is a well-known mathematical

construct known as conjugation.

The scalar product of two quaternions can be calculated just like 3D vector scalar

products.

 𝑞𝑞𝑎𝑎. 𝑞𝑞𝑏𝑏 = |𝑞𝑞𝑎𝑎||𝑞𝑞𝑏𝑏|𝑐𝑐𝑐𝑐𝑐𝑐 𝛳𝛳
2
 (Eqn 15)

so the angle between two quaternions can be calculated as follows

 𝑐𝑐𝑐𝑐𝑐𝑐−1 𝛳𝛳
2

= (𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 + 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 + 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏)/|𝑞𝑞𝑎𝑎||𝑞𝑞𝑏𝑏| (Eqn 16)

This relationship between pairs of quaternions has been used extensively in this

research in Phase 2 to establish the accuracy of the trained A.N.N. and in Phase 3 to

calculate the angle between the helipad orientation and the fixed flat surface normal

from the ship.

To achieve a rotation from one point to another a process known as Spherical Linear

intERPolation (SLERP) is employed. Slerping rotates a point to another point through a

great circle at a constant angular velocity on the surface of a 4D unit sphere. Figure 21

below illustrates the path of a SLERP across the surface of the sphere.

57

Figure 21 SLERPing

Source: Adapted from

www.blackberry.com/developers/docs/6.0.0api/net/rim/device/api/math/Quaternion4f.html

Using quaternions for rotation has several advantages over using Euler angles mainly

because of the gimbal lock problem. They also require less computation as Euler angles

must make use of rotation matrices which have nine elements requiring forty-five total

arithmetic operations as opposed to twenty-eight for quaternions. Because quaternions

can use SLERPing to interpolate between points the motion is smooth and at a fixed

speed whereas matrix rotations using Euler angles can be jerky and non-linear (Dam,

Koch, & Lillholm, 1998).

4.3 Ship Motion

A ship’s motion at sea is dictated by the wind, the current and by the state of the sea

itself. Waves are formed at sea when energy from the wind is transferred to the surface

of the ocean through friction. The water moves in localised regions of circular motion as

58

a result and the energy passes from one localised region to the next. Wave energy is

transported through the water by this mechanism and can travel great distances (NOAA,

2014). The water itself does not move longitudinally with the wave but it does move in

a transverse motion perpendicular to the wave direction and any object floating on the

surface is subjected to this transverse up and down motion. At its simplest this motion

can be described by a sine wave but this is an over simplistic description. The simple

wave relationship 𝑐𝑐 = 𝑓𝑓𝑓𝑓 applies to ocean waves. 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆 are the frequency and

wavelength of the wave and 𝑐𝑐 is the speed of the wave or “celerity” (Nave, 2001).

Celerity refers to the net velocity of a wave with respect to the stationary water it is

passing through. The net velocity is inclusive of any current or any other disturbance

which adds or detracts from the wave propagation. Although waves can be

approximated by a sine wave, wave tank experiments have shown that ocean waves are

approximated by a trochoid shape (Bascom, 1964). Trochoid and sine are similar wave

shapes expect that as the wave amplitude increases the peaks of a trochoid wave tend to

get narrower and steeper. Figure 22 below illustrates this phenomenon. It is not obvious

in the figure that the peaks narrow and steepen because the wave amplitude has

increased but this is what happens when the phenomenon occurs.

59

Figure 22 Trochoidal form of ocean waves

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html#c1

Ocean waves can be further classified into linear and nonlinear categories. From the

regular wave theory there is a relationship between wavelength (𝜆𝜆), wave period (𝑇𝑇)

and water depth (𝐻𝐻) given by:

𝜆𝜆 = 𝑔𝑔
2𝛱𝛱
𝑇𝑇2𝑡𝑡𝑡𝑡𝑡𝑡ℎ 2𝛱𝛱

𝜆𝜆
𝐻𝐻 (𝐸𝐸𝐸𝐸𝐸𝐸 17) (Simmons, 1997)

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html#c1

60

Simulations used in the design of oil rigs (Jonathon & Taylor, 1997), ocean going

liners, oil tankers and other sea-going vessels include the parameters discussed above

but for this research and as a proof of concept only regular sinusoidal wave motion was

considered allowing the simulated ship to move with six D.o.F. as Figure 23 illustrates.

Figure 23 Co-ordinate frames

Source: (Aranda, Armada, & Cruz, 2004, p. 151)

4.4 Harris-Stephens Corner Algorithm

Harris-Stephens’ corner algorithm was developed by Chris Harris and Mike Stephens.

Edge detection filters had not been developed to handle corners and junctions (Canny,

1983) so by developing their own corner detection algorithm they were able to detect

corners in images. Extending earlier corner detection analysis carried out by Moravec

(Moravec, 1980) they solved underlying issues and created a new corner detection

algorithm. By incrementally moving a window over each pixel and calculating the pixel

intensities between successive pixels they were able to calculate local maxima per pixel.

Specifically, if a pixel had an 8-way intensity maximum then it was considered to be a

corner (Harris & Stephens, 1988). The Harris-Stephens algorithm is presented in Eqn 18

below.

𝑅𝑅 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀) − 𝑘𝑘 �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑀𝑀)�
2
 (Eqn 18)

61

where

𝑅𝑅 => 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑀𝑀 = �𝑤𝑤(𝑥𝑥,𝑦𝑦) �
𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

�
𝑥𝑥,𝑦𝑦

𝐼𝐼𝑥𝑥 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥

𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥,𝑦𝑦

62

Chapter 5 Phase 1 Image Processing
5.1 Introduction

The orientation of any object relative to the observer can be calculated if there are

visible points of reference which have a known configuration. This has been

demonstrated in an investigation of Hough transforms and plane orientations from skew

symmetry by Palmer, Petrou and Kittler (Palmer, Petrou, & Kittler, 1993). The

objective of Phase 1 is to identify these points of reference, so that the orientation may

be calculated.

U.A.V.s generally have an on-board camera and a camera is easy to retro-fit if the

U.A.V. doesn’t already have one. Camera orientation can be adjusted or set at a fixed

viewing angle. In this case it is optimal to point the camera facing directly downward. It

is assumed that there will be a video feed available from which frames will be extracted.

It is from these images that the points of reference will be extracted. The British Civil

Aviation Authority (CAA, 2013) specifies the dimensions for offshore helicopter

landing areas. The “H” sign of a helipad is standardised and this is internationally

recognised so it is natural to use this in choosing the points of reference. Existing or

custom written corner recognition algorithms can be used to calculate the coordinates of

each vertex. These algorithms may be applied to an image of the helipad. The resulting

coordinates will be normalised to match the frame size used to train the neural network

in Phase 2.

5.2 Methodology

Unity was employed throughout this project to simulate ship and helipad motion so it

was logical to employ it to produce video of the ship in motion relative to the U.A.V..

Video of the moving ship and helipad was used to capture a sequence of still images.

These in turn were fed into a greyscale filter and each image was imported into Matlab

where the Harris corner recognition function was applied to them. The algorithm finds

corner points and this was used to identify the vertices of the “H”. This exercise was

used as a visual test to recognise the vertices. For numerical comparison, at the point

when each image was saved, the actual orientation of the ship was recorded using

Unity’s WorldToScreenPoint() function. This function converts an objects world

63

position into its screen position. The output of the function is a pixel pair of x and y co-

ordinates so targets within the viewing window are represented as x and y co-ordinate

pairs.. Unity’s screen-space defines its origin (0,0) at the bottom-left of the screen.

To ensure the same sequence of vertices as Unity produces was recorded by Matlab

some basic mathematics was applied to the output. Using the formula for the equation

of a line calculated from two coordinates every vertex’s proximity to the line was

calculated and the vertices were sorted into the correct order. Matlab’s corner points are

represented as x and y coordinate pairs just as Unity represents them. The only

difference between both packages is that the y coordinates are inverted relative to each

other. The data was pre-processed to account for this so that both origins are perceived

to have the same screen position.

The output from both packages was a set of 24 normalised data points per image.

These were compared directly with each other. Visual inspection alone indicates a very

close match. Numeric comparisons also indicate a very close match. The results are

discussed in section 5.3.

5.3 Results & Conclusions

Ten random orientations of the ship were compared using Matlab and Unity. Two of

the sets of orientations are displayed in Figure 24 with Matlab’s corner recognition

output on the left and images saved directly from Unity on the right. The green points

on the images on the left indicate the Harris corner recognition results. The average

percentage difference between Matlab’s and Unity’s vertex coordinate calculation is +/-

0.3%.

High definition images weren’t suitable candidates for corner recognition as the

algorithm found corners even in straight lines where the lines were jagged. Managing

the different thresholds in the algorithm and reducing the number of required corners

helped to improve the relevant corner acquisition. It also proved more advantageous to

degrade image quality and add some noise so that jagged artefacts were smoothed out

and only true corners were detected. Finally, reducing the contrast between the deck and

the sea improved corner recognition.

64

The results from Phase 1 prove that the coordinates of the twelve vertices of a helipad

“H” can be calculated accurately by feeding a grey-scaled 2D frame of live video

through a corner recognition algorithm.

Figure 24 Matlab vs Unity “H” vertices calculation

65

Chapter 6 Phase 2 Orientation and Distance
6.1 Introduction

The purpose of Phase 2 is to train a neural network to calculate the orientation of a

ship and the U.A.V.’s distance to the deck using specific points of reference captured

from frames of live feed which will be provided by Phase 1. The trained A.N.N.

determines the orientation and proximity of a helipad relative to the U.A.V..

The training input dataset comprises samples of 12 normalised co-ordinates of points

on the landing pad. The training output dataset comprises orientation, expressed as

quaternions, and proximity expressed in Unity units. Unity’s default scale is set at one

unit to one metre in real-world terms (Unity, 2015). Unity is a 3D game development

package which utilises a physics engine to simulate real-world gravity controlled

interactions between different materials. The software is particularly useful for

production of a training dataset as the global orientation of an object can be recorded as

it moves in a manner similar to how it would move in the real world. Several other

parameters such as proximity and real world co-ordinates can also be recorded over

millisecond time intervals. The fully functional system will use the output from Phase 1

as input for this phase but for the purposes of this research the training dataset was

created through simulation of a ship’s motion at sea using Unity. Ship’s motion can be

expressed using rotational movements around the z, x and y axes termed pitch, roll and

yaw and translational movements left or right, forward or backward, up or down and

these are termed sway, surge and heave. Figure 25 illustrates the six elements of ship

motion.

Figure 25 Ship motion at sea

66

6.2 Methodology

6.2.1 Basis of Methodology

The methodology which was eventually employed in this phase was the result of

several experimental evolutions. This was carried out in order to find the optimum

configuration of simulation elements to produce the appropriate final dataset for training

of the A.N.N.. The following two sections outline how the experimentation evolved

until a final optimised set of methods was discovered.

6.2.2 Evolution of Methodology

Preliminary experiments were completed to test the effectiveness of the Harris corner

detection algorithm. A cube was created in Unity approximately 3 x 3 x 0.1 units in size

and a “H”, like those used on a helipad, was placed on the top face. Unity’s built in

functionality calculates the x and y coordinates of specific points in a viewing window

relative to the world space for that object. The cube’s rotation was set manually and an

image of each orientation was saved. These images were imported into Matlab and the

Harris Corner function was applied to each one. The x and y co-ordinates of the vertices

of the “H” were recorded. Figure 26 illustrates the Matlab corner recognition results.

Figure 26 Matlab Corner Recognition

67

Nineteen images covering a range of orientations were used. A dataset of the co-

ordinates along with the associated Euler angle representation of orientation was

compiled. The dataset was split into a 70:15:15 ratio and used to train a feed-forward

neural network. Input comprised the co-ordinates of the 12 vertices and output

comprised the orientation of the helipad expressed as Euler angles. Matlab’s fitting tool

was used for training. The trained A.N.N. proved highly inaccurate yielding an accuracy

of +/- 540 (Appendix A, Table 3).

Such a poor result merited further investigation. Issues arose when using Euler

angles. Training proved to be inaccurate because of the natural discontinuity that exists

when moving from 10 back to 3590 and further. This discontinuity proved problematic as

the trained neural network was not capable of discerning this small angular change so it

was decided to use unit quaternions instead to express the orientation. Quaternions have

been used for the control of rockets and satellites since the 1970’s (Wertz, 1978, p. 511)

and in computer graphics, to control rotation, since the 1980’s (Shoemake, 1985, p.

247). They do not suffer from the effect of gimble lock and there are no transition issues

crossing over the 00/3600 boundary. Unit quaternions are used to describe rotations in

three dimensions. As quaternions have four unique values this dictated how the A.N.N.

was structured. Twenty-four inputs represent the coordinates of the “H” vertices and

four outputs represent the orientation in quaternion format.

A new training dataset was created using quaternions to express orientation. The cube

(helipad) was again allowed to randomly rotate between +/- 300 along three axes and the

co-ordinates of each vertex along with the associated orientation were saved to a file.

The A.N.N. training proved more accurate with M.S.E. dropping from 58 down to 2.8 x

10-3 using quaternions instead of Euler angles. Figure 27 shows the high regression

value of the trained A.N.N., using quaternions instead of Euler angles.

68

Figure 27 Quaternion and distance regression plots for training

Figure 28 shows the A.N.N. training regression plot for thirty thousand samples. This

training dataset comprised target output for orientation only. Training proved more

accurate when two A.N.N.s were trained separately, one for orientation and the other for

69

distance. The dataset was produced by randomly rotating the cube +/-300 in x, y and z

axes. M.S.E. reduced to 4.33 x 10-4 with an overall linear regression of 0.999.

Figure 28 A.N.N. training using quaternions for rotation

The A.N.N.’s average angular difference was 6.40 (Appendix A, Table 4). Although

quite accurate when trained, testing the above A.N.N. using data gathered from the ship

simulation showed it to be completely inaccurate and the A.N.N. was not able to

generalise. Errors of 1000 were observed. An error of this magnitude can be a result of

over-fitting. The trained A.N.N. learns to only recognise data from the training set and

so cannot handle unseen data. It also occurs when a training dataset is not wide-ranging

enough to allow the A.N.N. to generalise. In this case the training dataset was created

by rotating a cube around a fixed origin whereas the test dataset was produced by

rotating a ship, with the cube placed on the deck near the stern, around a completely

Commented [A2]: check

70

different axis of rotation. The training helipad performed rotations which were

incomparable to the testing helipad’s rotations.

6.2.3 Final Methodology

It was decided to try and simulate the cube’s motion by embedding it on a model

ship. Blender, a 3D graphics and animation package, was used to create a scale model of

a navy frigate. This was imported into Unity. The training cube was embedded on the

aft deck of the ship so only the top face was visible. The model was rotated sinusoidally

with six degrees of freedom (pitch, roll, yaw, sway, surge and heave) using C# code.

The amplitude and frequency of these rotational movements as well as the three

translational movements could be varied to simulate real-world sea states. The

previously trained A.N.N. was tested using data produced by randomly rotating the ship.

Although trained to a high accuracy with overall regression of 0.9986 and an M.S.E. of

4.33 x 10-4 when tested using unseen data the angular error was 1000. A new training

dataset was created from the ship’s motion with the original helipad now part of the

ship’s structure on the aft deck. A wide set of translation and rotation motions were

required to produce a broad range of training values. The coordinates of the “H”

vertices and the orientation expressed as quaternions were recorded. The distance

between the U.A.V. and the helipad was also recorded. The dataset was preprocessed in

Excel and comprised 8040 samples with 24 normalised inputs and 4 outputs. It was

divided into a 70%:15%:15% ratio. 70% for training, 15% for validation and 15% for

testing during training. The L.M. backpropagation algorithm was used to train the

A.N.N.. Once trained the A.N.N. was tested using random ship motion unseen by the

network. Training and testing proved more accurate than in previous experiments.

Figures 29 and 30 illustrate the training results.

Commented [A3]: Check this

Commented [A4]: Not sure yet which appendix to add the code
to

71

Figure 29 Training regression plots, A.N.N. trained using ship data

Several A.N.N.s were trained and it was observed that training proved more

successful when the target output was separated into orientation and distance. This will

be explained in the results section below.

72

Figure 30 M.S.E. forA.N.N. trained using ship data

6.3 Results

The results of testing the trained A.N.N. discussed in section 6.2.2 are presented

below. The A.N.N. was tested using unseen ship motion data. Figures 31 and 32

illustrate the test results.

73

Figure 31 Regression plot for test data, A.N.N. trained using ship data

With an overall regression of 0.99903 the tested A.N.N. demonstrated almost perfect

correlation between target and actual output.

74

Figure 32 Error Histogram, A.N.N. trained using ship data

As can be seen from the training and testing plots above, the trained A.N.N. proved

very accurate. The network has an average angular error of 3.60.

6.4 Conclusions

Using quaternions instead of Euler angle for rotation improved A.N.N. training

resulting in a higher correlation between the expected and actual orientation.

Quaternions do not suffer from gimbal lock and more importantly for this research, they

do not exhibit the same non-linearity around 00 as Euler angles do. The transition from

00 to 3590 for Euler angles proved difficult to map for the A.N.N.. Quaternions rotate an

75

object from one orientation to another by conjugation of a vector. This means that

vector magnitude is maintained and a smooth SLERP is performed between the start

and end points of the rotation. Quaternions comprise an axis and an angle of rotation

which allows for a smooth, linear rotation regardless of the orientation of the object

being rotated. Therefore, quaternions avoid gimbal lock and there will never be any

issues with non-linearities at boundaries. As a result of this the A.N.N. can more easily

find patterns in the training data and in this case the A.N.N. can make a well-defined fit

between input and output.

Separating the training data into two unique datasets, one for rotation and one for

proximity yielded more accurate results; 30 versus 70 for rotation accuracy. Proximity

accuracy did not show any improvement from the original high accuracy of +/- 2%.

Initially the A.N.N. was trained using a cube in isolation but it was found that when the

A.N.N. was tested using the motion of the ship, with the cube embedded in the ship’s

deck, it was completely inaccurate and the A.N.N. was unable to generalize and began

to over-fit on the training dataset. The A.N.N. trained using the ship’s simulated motion

proved more realistic and reliable. The training set target versus actual output yielded an

average accuracy of +/- 2.150 (see results_quat_dist.xlsx/ship training 1802). Testing the

A.N.N. with unseen data proved accurate to an average error of +/- 3.60, this could be

improved upon by creating a training dataset with a broader range of motion. This

A.N.N. is trained and ready to be deployed. The output will be used as input for Phase

3. Based on these results it is possible to conclude that the trained A.N.N. satisfies all of

the requirements set out in section 6.1. Having trained an A.N.N. to calculate a ship’s

orientation it is clear that the process works to the required accuracy.

Commented [A5]: expand later

76

Chapter 7 Phase 3 Landing Prediction
7.1 Introduction

The goal for phase 3 is to predict a stream of safe landing intervals for the U.A.V.

using a trained A.N.N.. Prediction will involve calculating the helipad’s orientation over

a time interval and then calculating when it will be level enough to land on. When

attempting to land, the U.A.V. will require orientation data acquired in Phase 2. This

data will be fed into the trained A.N.N. and a landing window some set time into the

future will be output. Given knowledge of movement up to a given time, future

movement should be predictable in the short term. To allow for a sufficient amount of

data to be gathered in a short time-burst it was decided to create samples of data 500ms

in length captured in 100ms intervals. An arbitrary five seconds was chosen for the

landing manoeuvre to go from hovering to landing on the deck so at least fifty samples

were required. The target output was a Boolean value calculated by checking if the

angular difference between a normal from a level deck and the actual rotation of the

deck was below a certain threshold five seconds later. This threshold was chosen from

specifications for rotary helicopters and was set at 100. Figure 33 illustrates the angle

between the deck (green arrow) and the normal up vector (pink arrow). In this case the

normal is the expected normal (straight up) to the surface when the surface is perfectly

flat.

Figure 33 Angle between normal vector and ship

Although time-based the A.N.N. will be configured to recognise patterns and so a

feed-forward M.L.P will be used. The A.N.N. will have twenty inputs, fifteen hidden

77

neurons with tan sigmoid transfer function in the hidden layer, one output and a tan

sigmoid transfer function in the output layer. The backpropagation algorithm will be

scaled conjugate gradient. The aim is to classify input data as a true or false sample so a

classic time-series recurrent neural network will not be required.

7.2 Methodology

Using the setup in Unity from Phase 2 the ship model was set to simulate differing

sea states. The rotation expressed as a quaternion was written to a file every 100ms. The

associated angular difference between the orientation of the ship and a global upward

pointing vector was calculated and recorded every 100ms also. The dataset was

processed using Excel. The first data entry was from an arbitrary time in the past and

the succeeding four 100ms data points were prepended to this and saved. Samples of

500ms were created at 100ms intervals. The time between each sample was 100ms also.

The threshold for maximum angular difference was set at 100. This was used to

determine the target output, which determined whether the current orientation was

within an acceptable threshold for landing or not. This was recorded as a one for true

and zero for false. Each input was matched with the output from five seconds in

advance. A sample of the dataset can be seen in Figure 34 below.

Figure 34 Sample training dataset for Phase 3

78

 Intervals of half a second proved sufficiently long enough to provide enough

information to the A.N.N. to train it. For this training section only the orientation was

required. In order to successfully predict landing intervals from arbitrary heights above

the helipad an algorithm will have to be developed to determine the U.A.V.’s proximity

to the deck and to choose a separately trained A.N.N. for each proximity step. Initially

the A.N.N. was trained on the basis of a five second requirement for landing but as the

U.A.V. approaches the deck the landing time will decrease. Several A.N.N.s can be

trained for this purpose depending on the degree of accuracy required. The A.N.N. was

trained with 4400 samples using Matlab’s pattern tool for a five second landing

manoeuvre.

7.3 Results

Figure 35 illustrates the confusion matrix for the trained A.N.N.. Having determined

that the optimal number of neurons in the hidden layer was fifteen an overall accuracy

of 97.3% was the best training result. A separate network was also trained for a one

second landing manoeuvre (Figure 37 and 38).

79

Figure 35 Confusion Matrix for Phase 3 training 5 second landing time

Once trained the A.N.N. was tested using another unseen dataset. Figure 36

demonstrates the trained A.N.N.’s accuracy.

80

Figure 36 Confusion Matrix for tested Phase 3 A.N.N. 5 second landing

The critical value in these results is the 0.6% of times when the U.A.V. would attempt

a landing when it shouldn’t. This error will not be an issue because the results will be

averaged over time. Through a process of data filtering and average weighting, single

anomalies like the one seen in the confusion matrix will be extrapolated out of the

prediction data and ignored. This could add a lag of up to 500ms but to counteract this

the sample rate could be increased until the lag is reduced to a much smaller amount.

81

The A.N.N. training results for a one second landing window were as follows.

Overall a training success rate of 98.4% was achieved. When tested the A.N.N.

achieved a 98.5% success rate. As with the five second landing A.N.N. this A.N.N.

output will also be filtered and weighted to remove any anomalies.

Figure 37 Confusion matrix Phase 3 training 1 second landing

82

A useful analysis tool for binary decision systems is the receiver operating

characteristic (R.O.C.) curve. It is a measure of the true positive rate (sensitivity) as a

function of the false positive rate (fall-out). The curve indicates how well a system

performs (ref here). In the case of predictive land or no-land scenarios the numerical

comparison of both outcomes can provide an insight into the efficiency of the trained

A.N.N..

Figure 38 Confusion Matrix for Phase 3 1 second landing test

83

7.4 Conclusions

When used in conjunction with the trained A.N.N. from Phase 2 it can be shown

through simulation that the A.N.N. trained in Phase 3 is able to determine when a

U.A.V. should or should not land.

84

Chapter 8 Implementation of Phases 1, 2 and 3
8.1 Introduction

Chapter 8 details a real-time sequential investigation of the implementation of phases

1, 2 and 3. The combination of the three phases required the recording of images of the

moving helipad captured every 100ms and fed into Matlab. The output from this phase

had to be fed into the phase 2 A.N.N. in order to calculate the orientation of the helipad.

Finally, a 500ms sample of these orientations had to be used as input to the phase 3

A.N.N. to indicate whether or not it would be safe to land in five seconds time.

8.2 Results of Phase 1, 2 and 3 combined

Five images were saved, at 100ms intervals, from live video of a moving ship. The

images were fed into Matlab and the screen coordinates for each vertex of the “H” were

saved to a file. This sorted, normalised data was fed into the A.N.N. from phase 2 and

the output was used as input for the A.N.N. from phase 3. The images are shown below

in Figure 39 and the results are displayed in tables 1and 2.

85

t+500 ms t+400 ms

t+300 ms t+200 ms

t+100 ms

Figure 39 Video capture at 100ms intervals

86

Time helipad orientation Phase 2 output

ms x y z w x y z w Angle

t+500 0.130 0.0092 0.0337 0.991 0.141 0.0138 0.0763 0.9787 2.5970

t+400 0.140 0.0088 0.0334 0.990 0.161 0.0130 0.0667 0.9791 2.3664

t+300 0.141 0.0083 0.0320 0.989 0.144 0.0114 0.0811 0.9815 2.8596

t+200 0.134 0.0078 0.0293 0.990 0.165 0.0169 0.0603 0.9779 2.6120

t+100 0.120 0.0072 0.0256 0.992 0.112 0.0140 0.0520 0.9875 1.6404

Table 1 Helipad orientation vs orientation calculated by A.N.N.

The output from the A.N.N. was combined to create a 500ms sample. This consisted

of twenty elements and was used as input for the Phase 3 A.N.N. for a five second

landing. This A.N.N. outputs one value either zero or one, which translates into a no-

land or land manoeuvre. In this case a safe landing was calculated. The same data was

fed into an A.N.N. trained for a one second landing. In this case, with an input described

in Table 2 both A.N.Ns. predicted that the platform would be within the threshold for

landing both five seconds and one second hence.

 x y z w

t+500ms 0.141 0.0138 0.0763 0.9787

t+400ms 0.161 0.0130 0.0667 0.9791

t+300ms 0.144 0.0114 0.0811 0.9815

t+200ms 0.165 0.0169 0.0603 0.9779

t+100ms 0.112 0.0140 0.0520 0.9875

Table 2 Temporal input for phase 3 A.N.N.

87

8.2 Conclusion

This experiment illustrated above, used five sequential images of the helipad,

calculated the orientation of the helipad at each instance and calculated if it would be

safe to land five seconds and one second into the future. In this case the network

correctly predicted that it would be safe to land both times. The deck was level enough

that if this orientation was presented to the U.A.V. at the correct proximity then it would

be safe to land in one second or five seconds into the future. If this had been a real life

scenario then the U.A.V. would have attempted to land and wait for instructions at one

second intervals.

Before deploying this system the A.N.N. for Phase 3 would have to be trained with a

broader range of data possibly using all nine wind sea-states and ten swell states.

88

Chapter 9 Conclusions and Recommendations
9.1 Conclusions, Recommendations and Further Work

For use in a real-world application the trained A.N.N.s could be deployed as a

standalone application in a .jar or .exe file and embedded into a device such as an

Edison board. The system could be integrated with an existing system and act as an

audible or visual landing aid to assist, for example, a manned aircraft pilot to choose an

optimum landing window. In the U.A.V. realm the system could be deployed as an aid

to an existing autonomous landing system but with some more development it could be

transformed into a stand-alone autonomous landing control system. While this thesis

shows the feasibility of producing such an application, there would be a significant

amount of further research required before a working product could be developed.

Phase 1

The results achieved in Phase 1 prove that the methodology employed to find vertices

of a “H” from an image works well. The co-ordinates of each vertex were accurate to

within an average of +/- 0.3%. This of course was achieved using computer generated

images which are ideal for the process.

 Future work for this phase would require acquiring real images of a landing pad

during different sea states. Images of landing pads without a specific symbol should also

be acquired to check and see if it can be identified using the same methodology. There

will also be a requirement for error correction to account for incomplete landing pad

features and situations like water or dirt on the camera lens. Error correction can be

included by using known methods for pose estimation such as homography (Criminisi,

Reid, & Zisserman, 1997), photoclinometry (Portigliotti, Dumontel, Capuano, &

Lorenzoni, ND) and weak perspective and paraperspective projections (Dornaika &

Garcia, 1999).

Phase 2

The findings from Phase 2 show that given enough data an A.N.N. can be trained to

calculate orientation from a set of feature co-ordinates reasonably well. On average the

trained A.N.N. is accurate to +/- 3.60.

89

Future work for Phase 2 would include using less features on the landing pad to find a

threshold of required points. Using real-world data of ship motion using several ships

and as many sea states as possible would also lead to a better trained A.N.N. and should

improve the overall accuracy.

Phase 3

The results from training an A.N.N. in Phase 3 prove that given a set of orientations it

can be trained to predict future landing windows quickly and to quite a reasonable

degree of accuracy. During training the A.N.N. misclassified a land / no-land situation

1.2% of all the scenarios presented to it.

Future research on this phase should include a wide ranging real-world training

dataset. This would improve the classification accuracy. A system of filtering the

A.N.N. output so that any anomalies are ignored should also be included in this phase.

90

Bibliography
AltiGator. (2015). Drone Comparison Chart. Retrieved from

http://mikrokopter.altigator.com/:

http://mikrokopter.altigator.com/index.php?main_page=drone_selection_chart

Alzaydi, A. A., Vamaraju, K., Mukherjee, P., & Gorchynski, J. (2011). Optimized

Fuzzy Logic Training of Neural Networks for Autonomous Robotics Applications .

International Journal of Scientific & Engineering Research Volume 2, Issue 10 (pp. 1-

10). IJSER.

Amazon Prime Air. (2015). Amazon Prime Air. Retrieved from

http://www.amazon.com/: http://www.amazon.com/b?node=8037720011

Andes, D., Widrow, B., & Wan, E. (1990). MRIII: A robust algorithm for training

analog neural networks. Proceedings of the International Joint Conference on Neural

Networks (pp. 533-536). Washington DC: IJCNN.

Apple, I. (2015). iOS - Siri - Apple. Retrieved from http://www.apple.com/:

http://www.apple.com/ios/siri/

Aranda, G. J., Armada, M., & Cruz, J. D. (2004). Automation for the Maritime

Industries. Madrid: Instituto de Automática Industrial.

AUVSI. (2015, march 17). Sky-Futures Approved for Commercial Oil and Gas

Inspections. Retrieved from http://www.auvsi.org/:

http://www.auvsi.org/browse/blogs/blogviewer?BlogKey=418525df-1426-40d7-8574-

1307e78398ff&tab=recentcommunityblogsdashboard

Bascom, W. (1964). Waves and Beaches: The Dynamics of the Ocean Surface . New

York: Doubleday.

Bishop, C. M. (1997). Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

Boudjedir, H., Yacef, F., Bouhali, O., & Rizoug, N. (2012). Adaptive Neural Network

for a Quadrotor Unmanned Aerial Vehicle. International Journal in Foundations of

Computer Science & Technology (IJFCST), Vol. 2, No.4 (pp. 1-13). IJFCST.

Boundless. (2013). Psychology. Boston: Boundless Learning Inc.

91

Brockers, R., Bouffard, P., Ma, J., Matthies, L., & Tomlin, C. (2011). Autonomous

landing and ingress of micro-air-vehicles in urban environments based on monocular

vision. Micro- and Nanotechnology Sensors, Systems, and Applications III. Orlando:

Society of Photo-Optical Instrumentation Engineers (SPIE).

Burgess, M. (2015, November 27). Formula E announces 300kph 'RoboRace'

championship. Retrieved from http://www.wired.co.uk:

http://www.wired.co.uk/news/archive/2015-11/27/roborace-autonomous-cars-formula-e

Buskey, G., Wyeth, G., & Roberts, J. (2001). Autonomous Helicopter Hover Using an

Artificial Neural Network . Proceedings of the 2001 IEEE International Conference on

Robotics B Automation (pp. 1635-1640). Seoul: IEEE.

CAA, C. A. (2013). Standards for Offshore Helicopter Landing Areas. Norwich: The

Stationery Office (TSO).

Canny, J. F. (1983). Finding edges and lines in images . Boston: MIT.

Chang, J. (2015, November 1). Tesla's self-driving car is already getting smarter -

Quartz. Retrieved from qz.com: http://qz.com/538436/tesla-model-s-autopilot/

Criminisi, A., Reid, I., & Zisserman, A. (1997, July 13). A Plane Measuring Device.

Retrieved from http://www.robots.ox.ac.uk:

http://www.robots.ox.ac.uk/~vgg/presentations/bmvc97/criminispaper/planedev.html

Cummins, P. (2007, May). AerCorpsAircraft1922-1997. Retrieved from

http://www.ipmsireland.com/: http://www.ipmsireland.com/Forms-

Downloads/AerCorpsAircraft1922-1997.pdf

Dalamagkidis, K., & Valavanis, K. P. (2011). Nonlinear Model Predictive Control With

Neural Network Optimization for Autonomous Autorotation of Small Unmanned

Helicopters. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL.

19, NO. 4 (pp. 818-831). IEEE.

Dam, E. B., Koch, M., & Lillholm, M. (1998). Quaternions, Interpolation and

Animation. Copenhagen: University of Copenhagen.

darpa.mil. (2015, september 10). Robotic Landing Gear Could Enable Future

Helicopters to Take Off and Land Almost Anywhere. Retrieved from www.darpa.mil:

http://www.darpa.mil/news-events/2015-09-10

92

Darrow, B. (2015, november 3). MIT Technology Lets Fast-Flying Drones Avoid

Obstacles - Fortune. Retrieved from http://fortune.com/:

http://fortune.com/2015/11/03/drone-avoids-obstacles-heres-how/

Deshmukh, K., & Mali, S. (2015). Landing Assistance and Evaluation Using Image

Processing. International Journal of Research, 84-92.

Dierks, T., & Jagannathan, S. (2009). Neural Network Control of Quadrotor UAV

Formations. 2009 American Control Conference, (pp. 2990-2996). St. Louis.

Dierks, T., & Jagannathan, S. (2010). Output Feedback Control of a Quadrotor UAV

Using Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21,

NO. 1 (pp. 50-66). IEEE .

Dornaika, F., & Garcia, C. (1999). Pose Estimation using Point and Line

Correspondences. Real-Time Imaging, 215-230.

Dotenco, S., Gallwitz, F., & Angelopoulou, E. (2015). Autonomous Approach and

Landing for a Low-Cost Quadrotor Using Monocular Cameras. Computer Vision -

ECCV 2014 Workshops, 209-222.

Doughton, S. (2013, July 17). Northwest scientists using drones to spy on nature. The

Seattle Times.

Dunfied, J., Tarbouchi, M., & Labonte, G. (2004). Neural Network Based control of a

Four Rotor Helicopter. 2004 IEEE International Conference on Industrial Technology

(ICIT) (pp. 1543-1548). Hammamet: IEEE.

Dunn, F., & Parberry, I. (2012). 3D Math Primer for Graphics and Game Development,

2nd Edition. Boca Raton: CRC Press.

Esmailifar, S. M., & Saghafi, F. (2009). Autonomous Unmanned Helicopter Landing

System Design for Safe Touchdown on 6DOF Moving Platform . 2009 Fifth

International Conference on Autonomic and Autonomous Systems (pp. 245-250).

Valencia: IEEE.

Evans, T. (1967). A program for the solution of a class of geometric analogy

intelligence-test questions. In M. Minksy, Semantic information processing (pp. 271-

353). Cambridge MA: MIT Press.

93

F.A.A, F. A. (2012). Helicopter Instructor's Handbook. Oklahoma: U.S.Department of

Transportation.

FAA. (2015, August 27). Unmanned Aircraft Systems. Retrieved Novemebr 29, 2015,

from https://www.faa.gov: https://www.faa.gov/uas/

Facebook. (2015). How Does Facebook Suggest Tags. Retrieved from

https://www.facebook.com/: https://www.facebook.com/help/122175507864081

Fairhead, H. (2015). The McCulloch-Pitts Neuron. Retrieved from www.i-

programmer.info: http://www.i-programmer.info/babbages-bag/325-mcculloch-pitts-

neural-networks.html

Farooq, U., Gu, J., Amar, M., & Asad, M. (2013). A weighted matrix algorithm for

vision based lane following in autonomous navigation. 2013 Eighth International

Conference on Digital Information Management (ICDIM) (pp. 286-293). Islamabad:

IEEE.

Fitzgerald, D., Walker, R., & Campbell, D. (2005). A Vision Based Emergency Forced

Landing System for an Autonomous UAV . Australian International Aerospace

Congress Conference.

Freeman, J., & Skapura, D. (1992). Neural Networks. Addison-Wesley Publishing.

Fukushima, K. (1975). Cognitron: A Self-organizing Multilayered Neural Network.

Biological Cybernetics 20, 121-136.

Gavin, H. P. (2013). The Levenberg-Marquardt method for nonlinear least squares

curve-fitting problems. Duke University.

Gentner, D. (1983). Structure-Mapping: A theoretical framework for analogy. Cognitive

Science 7, 155-170.

Gibney, E. (2015, February 25). Game-playing software holds lessons for neuroscience

: Nature News & Comment. Retrieved from www.nature.com:

http://www.nature.com/news/game-playing-software-holds-lessons-for-neuroscience-

1.16979

Hamilton, S. W. (1844). On quaternions; or on a new system of imagineries in algebra.

Philosophical Magazine XXV, 10-13.

Hanson, A. J. (2006). Vizualising Quaternions. San Francisco: Elsevier.

94

Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Romsey:

Plessey Research.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York:

MacMillan College Publishing Company.

Hebb, D. O. (1949). The organization of behaviour. New York: Wiley.

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a

scaled-up primate brain and its associated cost. Proceedings of the National Academy of

Sciences of the United States of America. doi:10.1073/pnas.1201895109

Hijazi, S., Kumare, R., & Rowen, C. (2015). Using Convolutional Neural Networks for

Image Recognition. San Jose: Cadence Design Systems.

Hinton, G., & Sejnowski, T. (1983). Optimal Perceptual Inference. IEEE conference on

Computer Vision and Pattern Recognition.

Hopfied, J. j. (1982). Neural networks and physical systems with emergent collective

computational properties . Proceedings of the National Academy of Sciences, 2554-

2558.

Hui, C., Yousheng, C., Xiaokun, L., & Shing, W. W. (2013). Autonomous Takeoff,

Tracking and Landing of a UAV on a Moving UGV Using Onboard Monocular Vision .

Proceedings of the 32nd Chinese Control Conference, (pp. 5895-5901). Xi'an.

Ireland Defence Forces. (2015). AW139 | Fleet | Air Corps | Defence Forces. Retrieved

from http://www.military.ie/: http://www.military.ie/en/air-corps/fleet/aw139/

Jabr, F. (2012, june 13). Know Your Neurons: What Is the Ratio of Glia to Neurons in

the Brain? Retrieved from http://blogs.scientificamerican.com:

http://blogs.scientificamerican.com/brainwaves/know-your-neurons-what-is-the-ratio-

of-glia-to-neurons-in-the-brain/

James, M. (2014, december 10). The Deep Flaw in all Neural Networks. Retrieved from

http://www.i-programmer.info: http://www.i-programmer.info/news/105-artificial-

intelligence/8064-the-deep-flaw-in-all-neural-networks.html

James, M. (2014, May 27). The Flaw Lurking In Every Deep Neural Net. Retrieved

from http://www.i-programmer.info/: http://www.i-programmer.info/news/105-

artificial-intelligence/7352-the-flaw-lurking-in-every-deep-neural-net.html

95

Jonathon, P., & Taylor, P. (1997). On Irregular, Nonlinear Waves in a Spread Sea.

Journal of Offshore Mechanics and Arctic Engineering, 37-41.

Kamalasadan, S., & Ghandakly, A. A. (2011). A Neural Network Parallel Adaptive

Controller for Fighter Aircraft Pitch-Rate Tracking. IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1 (pp. 258-267). IEEE.

Keefe, P. (2014, May 16). Aviator & Engineer: Lawrence Burst Sperry. Retrieved Nov

23, 2015, from http://www.marinelink.com: http://www.marinelink.com/news/engineer-

lawrence-aviator369263.aspx

Kirchman, L. (2013, Sept 22). First Autopilot Flight Across Atlantic. Retrieved Nov 23,

2015, from http://wifi.actiontec.com: http://wifi.actiontec.com/first-autopilot-flight-

across-atlantic/

Klopf, A. H. (1972). Brain function and adaptive systems - A heterostatic theory.

Bedford MA: Air Force Cambridge Research Laboratories.

Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps.

Biological Cybernetics 43, 59-69.

Kong, H., Audibert, J., & Ponce, J. (2010). General Road Detection From a Single

Image. IEEE Transactions on Image Processing (pp. 221-2220). IEEE.

Lakshmikanth, G. S., Padhi, R., Watkins, J. M., & Steck., J. E. (2014). Adaptive Flight-

Control Design Using Neural-Network-Aided Optimal Nonlinear Dynamic Inversion.

Journal of Aerospace Information Systems, volume 11, number 11 (pp. 785-806). JAIS.

Lee, D., & Yeo, H. (2015). A study on the rear-end collision warning system by

considering different perception-reaction time using multi-layer perceptron neural

network. Intelligent Vehicles Symposium (IV), 2015 IEEE (pp. 24-30). Seoul: IEEE.

Lee, D., Horn, J. S.-U., & Long, L. (2003). Simulation of Pilot Control Activity during

Helicopter Shipboard Operation. AIAA Atmospheric Flight Mechanics Conference and

Exhibit. Austin: AIAA.

Levine, D. S. (2000). Introduction to Neural and Cognitive Modeling (second ed.). New

Jersey: Psychology Press.

Lizarraga, M. I. (1995). Autonomous landing system for a UAV . Monterey: Naval

Postgraduate School.

96

Lourakis, M. I. (2005). A Brief Description of the Levenberg-Marquardt Algorithm

Implemented by levmar. Heraklion: Foundation for Research and Technology - Hellas.

Markley, L. F., & Crassidis, J. L. (2014). Fundamentals of Spacecraft Attitude

Determination and Control. New York: Springer.

McCaffrey, J. (2015, february). Test Run - L1 and L2 Regularization for Machine

Learning. Retrieved from https://msdn.microsoft.com: https://msdn.microsoft.com/en-

us/magazine/dn904675.aspx

McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, vol. 5, 115-143.

Mercedes-Benz. (2015). The Merecedes-Benz F 015 Luxury in Motion. Retrieved from

www.mercedes-benz.com: https://www.mercedes-benz.com/en/mercedes-

benz/innovation/research-vehicle-f-015-luxury-in-motion/

Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan, F., . . .

Appuswamy, R. (2014, August 8). A million spiking-neuron integrated circuit with a

scalable communication network and interface. Science, pp. 668-673.

Metz, C. (2015, april 4). Finally, Neural Networks That Actually Work. Retrieved from

wired.com: http://www.wired.com/2015/04/jeff-dean/

Min, B.-M., Shin, H.-S., Tahk, M.-J., Kim, B. M., & Kim, B. S. (2006). Auto-landing

Guidance System Design for Smart UAV. KSAS International Journal, (pp. 118-128).

Minorsky, N. (1922). Directional Stability of Automatically Steered Bodies. Journal of

the American Society for Naval Engineers, Volume 32, Issue 2, 280-309.

Møller, M. (1993). A Scaled Conjugate Gradient Algorithm for Fast Supervised

Learning. Neural Networks, 525-533.

Moravec, H. (1980). Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover. Pittsburgh: Cernegie-Mellon University.

Nakanishi, H., Hashimoto, H., Hosokawa, N., Sato, A., & Inoue, K. (2002).

Autonomous Flight Control System for Unmanned Helicopter Using Neural Networks.

Proceedings of the 41st SICE Annual Conference (pp. 777-782). Osaka: IEEE.

Nave, R. (2001). Wave Motion. Retrieved from http://hyperphysics.phy-astr.gsu.edu/:

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html#c1

97

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep Neural Networks are Easily Fooled:

High Confidence Predictions for Unrecognizable Images. Computer Vision and Pattern

Recognition (CVPR ’15), 1-20.

Nguyen, D., & Widrow, B. (1989). The truck backer-upper: an example of self learning

in neural networks. Proceedings of the International Joint Conference on Neural

Networks, (pp. 357-363). Washington DC.

NOAA. (2014, October 30). Why does the ocean have waves? Retrieved from

http://oceanservice.noaa.gov: http://oceanservice.noaa.gov/facts/wavesinocean.html

O’Riordan, S. (2015, march 18). Irish Navy Drones to fight drug cartels. Retrieved

from http://www.irishexaminer.com: http://www.irishexaminer.com/ireland/irish-navy-

drones-to-fight-drug-cartels-319070.html

O'Callaghan, J. (2011, January 17). Top 5 Facts: Autopilot. Retrieved from

http://www.howitworksdaily.com: http://www.howitworksdaily.com/top-five-facts-

autopilot/

Oentaryo, R., & Pasquier, M. (2004). Self-trained automated parking system . Control,

Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th (Volume:2) (pp.

1005-1010). IEEE.

Oireachtas, H. o. (2015, march 19). Defence Forces Equipment: 2 Jul 2008: Written

Answers. Retrieved from http://oireachtasdebates.oireachtas.ie:

http://oireachtasdebates.oireachtas.ie/debates%20authoring/debateswebpack.nsf/takes/d

ail2008070200027?opendocument

Oxford. (2015, 01 22). UAV - definition of UAV in English from the Oxford dictionary.

Retrieved from http://www.oxforddictionaries.com/:

http://www.oxforddictionaries.com/definition/english/UAV

Palmer, P., Petrou, M., & Kittler, J. (1993). An Optimisation Approach to Improving

the Accuracy of the Hough Transform: Plane Orientations from Skew Symmetry. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1993,

CVPR '93 (pp. 682-683). IEEE Conference Publications.

Phillips, W. F. (2004). Mechanics of Flight. Hoboken: John Wiley & Sons.

Picton, P. (2000). Neural Networks. Basingstoke: Palgrave.

98

Pomerleau, D. (1989). ALVINN, An autonomous land vehicle in a neural network.

Retrieved March 2015, from http://repository.cmu.edu/:

http://repository.cmu.edu/cgi/viewcontent.cgi?article=2874&context=compsci

Portigliotti, S., Dumontel, M., Capuano, M., & Lorenzoni, L. (ND). Landing Site

Targeting and Constraints for EXOMARS 2016 Mission. Noordwijk: European Space

Agency.

Prasad, J., Calise, A., Pei, Y., & Corban, J. E. (1999). Adaptive Nonlinear Controller

Synthesis and Flight Test Evaluation On an Unmanned Helicopter. Proceedings of the

1999 IEEE International Conference on Control Applications (pp. 137-142). Kohala:

IEEE.

Puttige, V., Anavatti, S., & Samal, M. K. (2009). Real-time Validation of a Dual Neural

Network Controller for a Low-cost UAV. IEEE International Conference on Industrial

Technology, ICIT 2009 (pp. 1-6). Gippsland, Victoria: IEEE.

Qian, F., Gribkovskaia, I., & Halskau, Ø. S. (2011). Helicopter routing in the

Norwegian oil industry: Including safety concerns for passenger transport. International

Journal of Physical Distribution & Logistics Management, 401-415.

Quillian, M. (1968). Semantic Memory. In M. Minsky, Semantic Information

Processing (pp. 216-270). Cambridge MA: MIT Press.

Ren, W., & Beard, R. W. (2004). Trajectory Tracking for Unmanned Air Vehicles With

Velocity and Heading Rate Constraints. IEEE TRANSACTIONS ON CONTROL

SYSTEMS TECHNOLOGY, VOL. 12, NO. 5 (pp. 706-716). IEEE.

Ridgway, W. I. (1962). An adaptive logic system with generalizing properties. Stanford:

Stanford University.

Rosenblatt. (1962). Principles of neurodynamics; perceptrons and the theory of brain

mechanisms. Washington: Spartan Books.

Rossmcf. (2008, october 6). Comp305 Tutorial 1. Retrieved from

http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation:

http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation

Roweis, S. (nd). Levenberg-Marquardt Optimization. New York: New York University.

99

Rumelhart, D. E., Hinton, G., & Williams, R. (1986, October 9). Learning

representations by back-propagating errors. Nature, 533-536. doi:10.1038/323533a0

San Martin, R., Barrientos, A., Gutierrez, P., & del Cerro, J. (2006). Unmanned Aerial

Vehicle (UAV) Modelling Based on Supervised Neural Networks. Proceedings of the

2006 IEEE International Conference on Robotics and Automation (pp. 2497-2502).

Orlando: IEEE.

Sanchez-Lopez, J. L., Saripalli, S., Campoy, P., Pestana, J., & Fu, C. (2013). Toward

Visual Autonomous Ship Board Landing of a VTOL UAV. 2013 International

Conference on Unmanned Aircraft Systems (ICUAS) (pp. 779-788). Atlanta: ICUAS.

Sanchez-Lopez, J., Saripalli, S., Campoy, P., Pestana, J., & Fu, C. (2013). Toward

Visual Autonomous Ship Board Landing of a VTOL UAV. Proc. 2013 International

Conference on Unmanned Aircraft Systems (ICUAS) (pp. 113-127). Springer

Netherlands.

Sheng, C., Chen, J., Xie, Z., Bai, Y., & Yang, Z. (2008). Visual Navigation of

Intelligent Vehicle Based on Optimization Path. Proceedings of the 7th World Congress

on Intelligent Control and Automation (pp. 5068-5072). Chongqing: IEEE.

Shin, H., You, D., & Shim, D. H. (2013). An Autonomous Shipboard Landing

Algorithm for Unmanned Helicopters. International Conference on Unmanned Aircraft

Systems (pp. 769-778). Altanta, Aa: IEEE.

Shoemake, K. (1985). Animating Rotation with Quaternion Curves. SIGGRAPH, 245-

254.

Simmons, A. L. (1997). A DISCRETE, DIGITAL FILTER FOR FORWARD

PREDICTION OF SEAWAY ELEVATION RESPONSE. United States Navy.

Singleton, D. (2013). How I built a neural network controlled self-driving (RC) car!

Retrieved from blog.davidsingleton.org/nncar/: blog.davidsingleton.org/nncar/

Stockwell, B. (2014, august 19). droneguidelineswithlogos.pdf. Retrieved from

http://www.flightforlife.org/:

http://www.flightforlife.org/media/1147/droneguidelineswithlogos.pdf

Tan, F., Liu, D., Guan, X., & Luo, B. (2014). Unmanned Aerial Vehicles (UAV)

Heading Optimal Tracking Control Using Online Kernel-based HDP Algorithm. 2014

100

International Joint Conference on Neural Networks (IJCNN) (pp. 2683-2689). Beijing:

IJCNN.

Turk, M., Morgenthaler, D., Gremban, K., & Marra, M. (1988). VITS-A Vision System

for Autonomous Land Vehicle Navigation. IEEE Transactions on Pattern Analysis and

Machine Intelligence (pp. 342-361). IEEE.

Unity. (2015). Unity - Manual: Rigidbody. Retrieved from http://docs.unity3d.com:

http://docs.unity3d.com/Manual/class-Rigidbody.html

Urban Child Institute, T. (2015). Baby's Brain Begins Now: Conception to Age 3.

Retrieved May 29, 2015, from http://www.urbanchildinstitute.org/:

http://www.urbanchildinstitute.org/why-0-3/baby-and-brain

Vago, J. L., Lorenzoni, L., Calantropio, F., & Zashchirinskiy, A. M. (2015). Selecting a

landing site for the ExoMars 2018 mission. Solar System Research 2015, Volume 49,

Number 7 (pp. 538-542). Austin: Pleiades Publishing Inc.

Van Oosten, J. (2012, june 25). Understanding Quaternions 3D Game Engine

Programming. Retrieved from www.3dgep.com: http://www.3dgep.com/understanding-

quaternions/#more-1815

von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms

from unreliable components. Princeton: Princeton University Press.

Voskuijl, M., Walker, D., Manimala, B., & Gubbels, A. (2008). Simulation of automatic

helicopter deck landings using nature inspired flight control and flight envelope

protection. Rotorcraft Handling Qualities, 1-26.

Watt, A., & Watt, M. (1992). Advanced Animation and Rendering Techniques - Theory

and Practice. New York: Addison - Wesley.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioural Sciences. Cambridge MA: Harvard University.

Wertz, J. R. (1978). Spacecraft Attitude Determination and Control. Dordrecht: D.

Reidel Publishing Company.

Widrow, B., & Lehr, M. A. (1996). Perceptrons, Adalines and Backpropagation. In M.

A. Arbib, The Handbook of Brain Theory and Neural Networks (second ed., pp. 719-

724). Boston: MIT Press.

101

Widrow, B., Winter, R., & Baxter, R. (1987). Learning Phenomena in Layered Neural

Networks. IEEE First Annual Conference on Neural Networks (pp. 411-429). IEEE.

Wyeth, G. F., Buskey, G. D., & Roberts, J. (2000). Flight control using an artificial

neural network. . Proceedings of the Australian Conference on Robotics and

Automation: ACRA 2000, (pp. 65-70). Melbourne.

Yakanishi, H., Hashimoto, H., Hosokawa, N., Sato, A., & Inoue, K. (2002).

Autonomous Flight Control System for Unmanned Helicopter Using Neural Networks.

SICE 2002. Proceedings of the 41st SICE Annual Conference (pp. 777-782). Osaka:

IEEE.

Yang, S., Scherer, S., Schauwecker, K., & Zell, A. (2013). An onboard monocular

vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle.

Journal of Intelligent & Robotic Systems (pp. 499-515). Springer Science and Business

Media.

Yang, S., Scherer, S., Schauwecker, K., & Zell, A. (ND). Onboard Monocular Vision

for Landing of an MAV on a Landing Site Specified by a Single Reference Image.

Tubingen: University of Tubingen.

Yu, Z., Nonami, K., Shin, J., & Celestino, D. (2007). 3D Vision Based Landing Control

of a Small Scale Autonomous Helicopter.

International Journal of Advanced Robotic Systems, (pp. 51-56).

Zhao, S., Dong, W., & Farrell, J. A. (2013). Quaternion-based Trajectory Tracking

Control of VTOL-UAVs using command filtered backstepping . American Control

Conference (ACC) (pp. 1018-1023). Washington: IEEE.

102

Appendix A
Detailed treatment of Eqn 11:

* (𝑖𝑖𝑖𝑖 = 𝑘𝑘, 𝑗𝑗𝑗𝑗 = 𝑖𝑖,𝑘𝑘𝑘𝑘 = 𝑗𝑗, 𝑗𝑗𝑗𝑗 = −𝑘𝑘,𝑘𝑘𝑘𝑘 = −𝑖𝑖, 𝑖𝑖𝑖𝑖 = −𝑗𝑗, 𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = 𝑖𝑖𝑖𝑖𝑖𝑖 = −1)

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏 = [𝑤𝑤𝑎𝑎, 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏, 𝑣𝑣𝑏𝑏] = (𝑤𝑤𝑎𝑎 + 𝑥𝑥𝑎𝑎𝑖𝑖 + 𝑦𝑦𝑎𝑎𝑗𝑗 + 𝑧𝑧𝑎𝑎𝑘𝑘)(𝑤𝑤𝑏𝑏 + 𝑥𝑥𝑏𝑏𝑖𝑖 + 𝑦𝑦𝑏𝑏𝑗𝑗 + 𝑧𝑧𝑏𝑏𝑘𝑘)

 = (𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏)

 +(𝑤𝑤𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑥𝑥𝑎𝑎 + 𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑧𝑧𝑎𝑎)𝒊𝒊

 +(𝑤𝑤𝑎𝑎𝑦𝑦𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑦𝑦𝑎𝑎 + 𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑧𝑧𝑏𝑏𝑥𝑥𝑎𝑎)𝒋𝒋

 +(𝑤𝑤𝑎𝑎𝑧𝑧𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑧𝑧𝑎𝑎 + 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌

 = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏 ,

𝑤𝑤𝑎𝑎(𝑥𝑥𝑏𝑏𝒊𝒊 + 𝑦𝑦𝑏𝑏𝒋𝒋 + 𝑧𝑧𝑏𝑏𝒌𝒌) + 𝑤𝑤𝑏𝑏(𝑥𝑥𝑎𝑎𝒊𝒊 + 𝑦𝑦𝑎𝑎𝒋𝒋 + 𝑧𝑧𝑎𝑎𝒌𝒌)

 +(𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑧𝑧𝑎𝑎)𝒊𝒊 + (𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑧𝑧𝑎𝑎)𝒋𝒋 + (𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑥𝑥𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌]

The following can be substituted into the previous equation

𝑣𝑣𝑎𝑎 = 𝑥𝑥𝑎𝑎𝒊𝒊 + 𝑦𝑦𝑎𝑎𝒋𝒋 + 𝑧𝑧𝑎𝑎𝒌𝒌 vector a

𝑣𝑣𝑏𝑏 = 𝑥𝑥𝑏𝑏𝒊𝒊 + 𝑦𝑦𝑏𝑏𝒋𝒋 + 𝑧𝑧𝑏𝑏𝒌𝒌 vector b

𝑣𝑣𝑎𝑎. 𝑣𝑣𝑏𝑏 = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏𝒊𝒊𝟐𝟐 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏𝒋𝒋𝟐𝟐 + 𝑧𝑧𝑎𝑎𝑧𝑧𝑏𝑏𝒌𝒌𝟐𝟐 dot product

𝑣𝑣𝑎𝑎𝑥𝑥𝑣𝑣𝑏𝑏 = (𝑦𝑦𝑎𝑎𝑧𝑧𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑧𝑧𝑎𝑎)𝒊𝒊 + (𝑧𝑧𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑧𝑧𝑏𝑏𝑥𝑥𝑎𝑎)𝒋𝒋 + (𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑥𝑥𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌 cross product

therefore

[𝑤𝑤𝑎𝑎, 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏, 𝑣𝑣𝑏𝑏] = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑣𝑣𝑎𝑎 . 𝑣𝑣𝑏𝑏 ,𝑤𝑤𝑎𝑎𝑣𝑣𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑎𝑎𝑥𝑥𝑣𝑣𝑏𝑏]

103

Tables of Results

Image H1 H2 H3 H4

Target
x: 200
y: 3030
z: 3080

x: 460
y: 3390
z: 20

x: 490
y: 510
z: 260

x: 490
y: 510
z: 340

Actual
x: 346.670
y: 352.140
z:349.680

x: 351.820
y: 360.690
z:358.210

x: 11.660
y: 15.510
z:12.990

x: 9.080
y: 13.210
z:10.750

Delta
x: 340
y: 490
z: 420

x: 540
y: 210
z: 40

x: 370
y: 350
z: 130

x: 400
y: 380
z: 230

Table 3 Results for first A.N.N. in Phase 2, Euler angles for orientation

Target output

Actual output Angle
(deg) x y z w x y z w

-0.09 0.16 -0.23 0.96 -0.11 0.16 -0.21 0.95 2.98

0.10 -0.07 -0.19 0.98 0.05 -0.07 -0.17 0.97 4.7

-0.00 -0.05 -0.04 1.00 -0.03 -0.04 0.01 0.99 13.1

-0.06 -0.12 0.04 1.00 -0.09 -0.12 -0.00 0.98 8.00

0.10 -0.10 0.15 0.98 0.08 -0.10 0.17 0.96 4.62

-0.15 0.21 -0.17 0.95 -0.15 0.22 -0.15 0.95 5.2

-0.11 0.25 0.15 0.95 -0.11 0.24 0.18 0.94 6.98

-0.25 0.07 0.15 0.95 -0.23 0.07 0.16 0.96 2.96

0.25 0.11 0.13 0.95 0.24 0.12 0.11 0.97 4.8

0.16 -0.19 0.24 0.94 0.13 -0.18 0.20 0.94 10.24

Table 4 A.N.N. test results using quaternions, phase 2 testing actual vs expected rotation

104

Target output Actual output Angle
(deg) x y z w x y z w

0.19 -0.02 0.05 0.98 0.22 -0.02 0.04 0.98 1.5
0.20 -0.02 0.05 0.98 0.20 -0.03 0.05 0.98 1.4
0.20 -0.02 0.05 0.98 0.20 -0.03 0.05 0.98 1.02
0.21 -0.03 0.06 0.97 0.21 -0.03 0.07 0.97 1.52
0.22 -0.03 0.07 0.97 0.22 -0.03 0.08 0.97 2.52
0.17 0.05 -0.12 0.98 0.15 0.04 -0.11 0.98 2.38
0.14 0.04 -0.12 0.98 0.17 0.04 -0.09 0.97 7.48
0.13 0.04 -0.12 0.98 0.13 0.05 -0.10 0.98 4.48
0.10 0.04 -0.12 0.99 0.10 0.04 -0.11 0.98 4.3
0.10 0.04 -0.12 0.99 0.13 0.03 -0.10 0.98 5.26

Table 5 A.N.N. test results for Phase 2 using quaternions for orientation and ship data for

training and testing

105

Statenumber Height(m) Description Swell

number

Description

0 No wave Calm (Glassy) 0 No swell

1 0 - 0.10 Calm (Rippled) 1 Very low (short & low wave)

2 0.10 - 0.50 Smooth 2 Low (long & low wave)

3 0.50 - 1.25 Slight 3 Light (short & moderate wave)

4 1.25 - 2.50 Moderate 4 Moderate (moderate wave)

5 2.50 - 4.00 Rough 5 Moderate (long & moderate

wave)

6 4.00 - 6.00 Very rough 6 Rough short & heave wave

7 6.00 - 9.00 High 7 High (average & heavy wave)

8 9.00 - 14.00 Very high 8 Very high (long & heavy wave)

9 14.00+ Phenomenal 9 Confused (wave length & height

indefinable)

Table 6 Douglas Sea state scale and swell scale

106

Appendix B

Contents of DVD

The attached DVD contains the following:

Excel file containing results of all experiments for all phases.

 results_quat_dist.xlsx

 results_1411_quat_dist.xlsx

Raw training and testing data CSV files.

 cornersForm_ship_1802.csv

 shipPattern_1203.csv

Code for corner recognition

C# code for ship simulation including orientation calculation, vertices coordinate

tracking, export to file and deviation of landing pad from normal.

Soft copy of thesis

	Neural Networks for Autonomous Control of Unmanned Helicopters
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Project Motivation
	1.2 Aims of Project
	1.3 Thesis Structure

	Chapter 2 Artificial Neural Networks
	2.1 Introduction
	2.2 Biological Neural Networks
	2.3 History of A.N.N.s
	2.3.1 McCullogh-Pitts Neuron
	2.3.2 Perceptron
	2.3.3 Multi-Layered Perceptron
	2.3.4 Adaline / Madaline
	2.3.5 Minsky & Pappert
	2.3.6 Modern Developments

	2.4 ANN Architecture / Backpropagation
	2.4.1 Introduction
	2.4.2 Summation Function
	2.4.3 Activation and Output
	2.4.4 Feed forward and Feedback Neural Networks

	2.5 ANN Training Algorithms and Optimisation Techniques
	2.5.1 Backpropagation
	2.5.2 Scaled Conjugate Gradient
	2.5.3 Newton’s Method
	2.5.4 Quasi-Newton
	2.5.5 Gauss-Newton
	2.5.6 Levenberg-Marquardt

	2.6 Over-fitting and Generalisation
	2.7 ANN Implementation
	2.7.1 Data Mapping
	2.7.2 Pattern Recognition

	2.8 Conclusion

	Chapter 3 The implementation of Artificial Neural Networks and Other Methods for Vehicle Control
	3.1 Introduction
	3.2 Analysis
	3.2.1 Vehicle control using Artificial Neural Networks.
	3.2.2 Machine Vision Control Systems
	3.2.3 Algorithm Based Control Systems

	3.3 Conclusion

	Chapter 4 Technical and Mathematical Background
	4.1 Introduction
	4.2 Quaternions
	4.3 Ship Motion
	4.4 Harris-Stephens Corner Algorithm

	Chapter 5 Phase 1 Image Processing
	5.1 Introduction
	5.2 Methodology
	5.3 Results & Conclusions

	Chapter 6 Phase 2 Orientation and Distance
	6.1 Introduction
	6.2 Methodology
	6.2.1 Basis of Methodology
	6.2.2 Evolution of Methodology
	6.2.3 Final Methodology

	6.3 Results
	6.4 Conclusions

	Chapter 7 Phase 3 Landing Prediction
	7.1 Introduction
	7.2 Methodology
	7.3 Results
	7.4 Conclusions

	Chapter 8 Implementation of Phases 1, 2 and 3
	8.1 Introduction
	8.2 Results of Phase 1, 2 and 3 combined
	8.2 Conclusion

	Chapter 9 Conclusions and Recommendations
	9.1 Conclusions, Recommendations and Further Work

	Bibliography
	Appendix A
	Detailed treatment of Eqn 11:
	Tables of Results

	Appendix B
	Contents of DVD

