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Abstract 

Landing a helicopter on a ship in high seas can be a dangerous endeavour. This thesis 

proposes to examine the possible uses of Artificial Neural Networks (A.N.N.) in the 

aiding and/or the landing of an Unmanned Aerial Vehicle (U.A.V.). It proposes that this 

procedure can be segregated into three distinct phases. The data for the A.N.N. training 

and testing sets is generated through simulation in the Unity cross-platform game 

engine. Phase 1 is intended to convert video images from an on-board camera to a set of 

numeric outputs suitable for use in Phase 2. Phase 2 estimates the current relative 

orientation and distance of the camera to the platform. Phase 3 determines when a future 

landing window may occur.  

Phase 1 takes live video feed of the helipad and a corner recognition algorithm is 

applied to images captured from it. The co-ordinates of the vertices have been measured 

to within +/- 0.3%. Phase 2 required normalized points representing positions on a 

screen of specific elements on the landing pad.  Orientation has been determined to 

within 3.60 and distance correct to within 2%. Phase 3 takes the orientations calculated 

from Phase 2 over a given time period and predicts whether at a specific, fixed, time 

into the future landing would be possible based on a maximum deviation of the 

orientation from the ideal.  
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Chapter 1  Introduction 
1.1 Project Motivation  

Unmanned Aerial Vehicles (U.A.V.) are increasingly being utilised in place of 

Manned Aerial Vehicles (M.A.V.) especially in situations which are dangerous or 

undesirable for human pilots. U.A.V.s are defined as “an aircraft piloted by remote control or 

on-board computers” (Oxford, 2015).  Most military U.A.V.s have fixed wings but with 

advances in technology rotor wing U.A.V.s have become more prevalent and as a result 

have become available to the wider public. These are much easier to remotely control 

and do not require large take-off and landing areas. They will be used by Amazon to 

autonomously deliver goods (Amazon Prime Air, 2015) and are being used by the navy 

for surveillance, by farmers for crop surveying, by television companies for low-cost 

aerial footage, by search and rescue teams and by hobbyists to experience the thrill of 

flight control from the aircraft’s perspective. U.A.V.s have become so pervasive that it 

has led to a need for specific legislation to safeguard civilian and military flight areas 

and to safeguard the public from accidents involving U.A.V.s.  

The Irish Navy (O’Riordan, 2015) is planning to use remotely controlled U.A.V.s 

which they will launch and land from their vessels. They will add to the Naval Service’s 

capabilities in operations involving illegal drug/fishing activity and surveying oil and 

chemical spillages. At present the Irish Air Corps has, in service, six Augusta Westland 

AW139 military helicopters (Ireland Defence Forces, 2015) each with a price tag of 

€13million (Cummins, 2007). Employing military drones to replace manned aircraft for 

some operations at sea would be advantageous for several reasons including cost 

effectiveness, risk aversion and increased practicality. As a cost effective measure alone 

the price difference between manned and unmanned aerial vehicles is quite substantial. 

The Irish Government purchased two U.A.V. systems in 2007 at a total cost of 

€780,000 (Oireachtas, 2015).  

Flying at sea is considered more dangerous than land based flight because of the lack 

of a safe landing zone in the event of an accident or technical failure (Qian, 

Gribkovskaia, & Halskau, 2011). If sea conditions are not favourable landing can be 

difficult (Lee, Horn, & Long, 2003) even for a well trained and experienced pilot. 

Landing a U.A.V. on a ship is a perilous exercise and “is one of the most dangerous of all 
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helicopter operations” (Voskuijl, Walker, Manimala, & Gubbels, 2008, p. 1). Ship’s motion 

exhibits six Degrees of Freedom (D.o.F.), three rotational; pitch, roll, yaw and three 

translational; heave, surge and sway. An aircraft exhibits the same range of motion. 

Naval services around the world are increasingly utilising U.A.V.s to replace costly 

manned aircraft for reconnaissance and dangerous missions. Because of the construction 

and mechanics of rotor winged U.A.V.s a crash on landing can be catastrophic. In 

difficult landing conditions the choice is often made to abort a landing and to ditch the 

aircraft in the sea and retrieve it, rather than risk the possibility of a potentially 

devastating and expensive crash landing. Ditching the U.A.V. accepts a level of 

damage, albeit far less than that of a crash on the deck of the ship, and a further cost in 

the time it takes to retrieve the U.A.V. from the ocean.   

The use of ship-board U.A.V.s is not limited to military applications. Oil drilling 

companies make use of drone technologies for unmanned inspections of oil rigs 

(AUVSI, 2015). The field of marine research is also benefitting from U.A.V. 

deployment (Doughton, 2013).  With the shift from military to more civilian domains 

the use of U.A.V.s in diverse fields of human interest is increasing and will only be 

limited by restrictions imposed by aviation authorities (FAA, 2015).  

This thesis proposes to examine the feasibility of using Artificial Intelligence (A.I.) to 

land, or aid in the landing of a U.A.V. on the helipad of a ship. 

Artificial Neural Networks (A.N.N.) are a branch of A.I.. They have a proven track-

record for controlling vehicles of all types including aerial vehicles. The truck backer 

upper (Nguyen & Widrow, 1989) used A.N.N.s to first learn how to drive a computer 

simulated truck and trailer and then control it. Hover control of a U.A.V. was achieved 

by researchers (Wyeth, Buskey, & Roberts, 2000) at the University of Queensland using 

A.N.N.s. David Singleton (Singleton, 2013) trained an A.N.N. to navigate a remotely 

controlled car on a track even when the track was built on the fly. Autonomous U.A.V. 

landing was proposed by (Sanchez-Lopez J. , Saripalli, Campoy, Pestana, & Fu, 2013) 

using 3D vision and an A.N.N. to classify a landing zone. There are many more 

examples of A.N.N.s used to control or classify elements of U.A.V. flight control. 

A.N.N. implementation for autonomous vehicles has become prominent in the public 

arena thanks to self-parking cars (Oentaryo & Pasquier, 2004), collision warning 
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systems (Lee & Yeo, 2015), Google cars (Metz, 2015), Tesla auto-piloted cars (Chang, 

2015), driverless formula E cars (Burgess, 2015), Mercedes-Benz F105 autonomous 

cars (Mercedes-Benz, 2015) and Amazon’s drone deliveries (Amazon Prime Air, 2015).   

Autonomous U.A.V.s are controlled by on-board control systems. They have the 

ability to take-off, fly and land without the need for human intervention. These types of 

U.A.V. are particularly useful in situations where they are out of sight or situations of 

extreme danger such as natural disasters. U.A.V.s capable of taking off from and 

landing on a sea-based platform or ship are increasingly being used for reconnaissance, 

aerial photography, weather data acquisition and many more applications. Naval 

services are the primary users of U.A.V.s at sea but many civilian organisations also 

make use of them.  

A major requirement when using autonomous U.A.V.s, in hostile offshore 

environments, is the aircraft’s capability to return and land safely on a ship or platform. 

Development of a safe, reliable method of autonomously landing a U.A.V. on a moving 

platform at sea is the main motivation for this project.      

 

1.2 Aims of Project 

This project was only ever going to be feasible through simulation, due to the costs of 

the U.A.V.s in question and the very nature of the conditions in which they were 

intended to operate. Given that modern drones are inherently stable, i.e. can 

automatically hover at a given position (Stockwell, 2014) (AltiGator, 2015), it was 

decided that this project would concentrate on aiding the landing by predicting when 

appropriate landing windows would occur. 

Ideally the helipad should be flat for touch down, but U.A.V.s  are now able to land 

on sloped surfaces also, this has been demonstrated recently by Defense Advanced 

Research Projects Agency (DARPA) (darpa.mil, 2015).  This thesis examines the use of 

A.N.N.s to predict when a helipad will be within this threshold.  All these U.A.V.s will 

have an on-board camera, which will deliver its feed in real-time and will not require 

any additional hardware on the helipad. To summarise, the goal is to be able to predict 

suitable landing windows given live video of the helipad from the U.A.V.. 
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At this stage it was decided to break up the problem into three distinct phases. This 

research proposes a novel approach to the task of landing a U.A.V. on a ship using 

A.N.N.s. The ultimate goal is to produce a safe and reliable landing tool. The flowchart 

below illustrates the proposed research process. 

 

Figure 1  Flowchart Phase 1 to Phase 3 
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The three distinct phases are as follows: 

Phase 1 assumes that there will be a video feed available from an on-board camera 

and attempts to ascertain key points which would allow phase 2 to calculate the relative 

orientation and distance to the platform. In the case of this experiment, the points of 

interest are the 12 vertices defining the corners of the "H" of the helipad. The exact 

number of required points is arbitrary, even the outer four vertices would suffice in 

order to calculate orientation. Using all of the vertices ensures that a broader dataset can 

be used for training. The points are normalised and scaled to ensure independence from 

camera resolutions. 

Phase 2 takes the normalised points provided by Phase 1 and uses an A.N.N. to 

calculate the relative orientation and distance of the helipad to the U.A.V.. 

Phase 3 uses an A.N.N. to predict an optimal landing period some distinct time into 

the future. This is achieved by using the output data from Phase 2 and processing it so 

that the landing pad’s orientation a set time in the future can be used as instantaneous 

training data. The orientation data for Phase 2 is captured every 100ms and compiled 

into samples of 500ms intervals. The angular difference between a global upward 

pointing vector and a normal from the ship is computed. This angular difference from 

the sample five seconds in advance is set as the output value for each instantaneous 

input sample.  

1.3 Thesis Structure 

This research proposes to investigate the possibility of using A.I. to land or aid in the 

landing of a U.A.V.. The particular field within A.I. which will be used to undertake 

this investigation is A.N.N.s. Once trained they will be used to calculate orientations 

and also to predict future outcomes as well as possibly controlling a U.A.V.. 

A.N.N.s, their history, implementations and fundamental principles will be discussed 

in Chapter 2. The control of vehicles using A.N.N.s, optical technologies and algorithms 

will be explored in Chapter 3. Chapter 4 deals with the technical and mathematical 

issues encountered. 



6 
 

The main experimental work of this research has been broken down into distinct 

phases. Chapter 5, Phase 1, contains an explanation of the process involved in using still 

images from live video to produce a dataset to train an A.N.N.. The training of the 

A.N.N., Phase 2 orientation calculation, will be discussed in detail in Chapter 6. The 

landing prediction phase, Phase 3, will be explained in Chapter 7.  

Chapter 8 comprises a standalone experiment which combines Phases 1, 2 and 3. The 

conclusions attained from this research are summarised in Chapter 9 and further 

research which could be carried out is also detailed here.   
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Chapter 2  Artificial Neural Networks 
2.1 Introduction 

Human learning involves an electrochemical process of repeated motion of electrical 

impulses throughout a biological neural network. Neurons can be considered the 

building blocks for human and animal learning. Electrical impulses progress through the 

biological brain by exceeding a threshold which exists between neurons. If the impulse 

is strong enough then the person or animal will remember the action which caused the 

transition and therefore will learn from it.  

Artificial neurons have been developed to model biological neurons. They form the 

basic structure of an A.N.N. which functions in a similar way to a biological neural 

network (B.N.N.). An input signal is presented to a neuron and this signal is processed 

and transferred to successive neurons, each having a unique threshold value, until a 

required output signal is attained. When training an A.N.N. the threshold values can be 

adjusted and the network learns to produce the required output. 

This chapter explains the fundamental theories relating B.N.N.s to A.N.N.s, by first 

introducing both networks and then detailing the evolution of A.N.N.s. The 

development of back-propagation algorithms, which the network uses to match the 

target output with the actual output, will be discussed. Finally, the reason why particular 

A.N.N.s and algorithms have been chosen for this research will be explained.         

 

2.2 Biological Neural Networks 

Biological nervous systems contain neurons and another type of cell known as a glial 

cell. Glial cells’ primary function is to maintain the structure of the brain and nervous 

system (Jabr, 2012). They are not capable of conducting electrical impulses. Neurons, 

on the other hand, do conduct electrical signals which propagate through the nervous 

system. Nerve impulses in muscles and glands and other receptors in the body excite 

neurons to a point where they emit these electrical signals. The number of neurons in a 

human brain has been estimated at 86 billion (Herculano-Houzel, 2012). 
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A typical biological neuron is illustrated in Figure 2. All neurons have a similar 

structure and differ only in length and shape depending on their function in the nervous 

system. Neurons connect with other neurons through the release of a chemical called a 

neurotransmitter. This neurotransmitter is only released when the electrical signal 

within the neuron exceeds a threshold. The electrical signal enters the receiving 

(postsynaptic) neuron via the dendrites, across a gap between it and the transmitting 

(presynaptic) neuron called a synapse. The cell body contains a nucleus which directs 

the incoming signal to the axon. The axon determines whether the signal will be 

transferred to the axon terminals.  

 

Figure 2  A neuron interacting with another neuron 

Source: Adapted from http://www.urbanchildinstitute.org (Urban Child Institute, 2015) 

The signal propagation is executed by rapidly changing the polarity within the axon, a 

process known as action potential. There are three phases in the action potential. 

1. Depolarisation: When a neuron is not receiving a signal it is said to have a resting 

potential. Once the neuron receives a signal, positively charged sodium cations (atoms 

that have a deficit of electrons) rapidly enter the inside of the membrane within the 
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axon. This has the effect of making the polarity inside the membrane more positive than 

the outside.      

2. Repolarisation: Once the electrical potential between either face of the membrane 

wall reaches a threshold of excitement sodium cations are blocked from continuing to 

enter the membrane. At this point potassium cations are released from inside the 

membrane and counteract the outer negative potential neutralising it and restoring the 

neuron to its resting potential. 

3. Refactory Phase:  During this phase sodium cations are released back to the outer 

side of the membrane and potassium cations return to the inner side. This part of the 

axon cannot reach the threshold of excitement again until all of the ions have returned to 

their resting state. The refactory phase lasts approximately 1 millisecond (Freeman & 

Skapura, 1992).   

These phases send the signal quickly through the axon in a wave-like motion. 

Regardless of the strength of the stimulating signal the action potential has a maximum 

value of between 70 and 100 mV. A myelin sheath insulates the axon so the electrical 

signal can travel quicker through it. Nodes of Ranvier force the signal to jump from one 

section of the axon to the next.  Once the electrical signal reaches the terminals of the 

axon neurotransmitters are released and these chemicals make the transition across the 

synapse and land in receptors in the dendrite of the postsynaptic neuron. At the receptor 

site the neurotransmitter is converted back to an electrical signal. There are over fifty 

types of neurotransmitter in the human brain and each one can have a different effect on 

the signal generated in the postsynaptic cell. Some can dampen a signal while others are 

used to stimulate the target neuron.  

Finally, the presynaptic neuron re-absorbs the neurotransmitters once the neural 

impulse has been successfully transmitted (Boundless, 2013). This whole process 

enables humans and animals to respond to external stimuli and to learn through 

repetitive execution of actions.   
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2.3 History of A.N.N.s 

A.N.N.s were developed as a system which could learn in a similar way to the human 

brain. Just as synapses in the brain channel electrical impulses an A.N.N. contains 

channels which direct the flow of data. 

Artificial Neural Networks (A.N.N.) form a subset of inductive machine learning 

which is a subfield of Artificial Intelligence (A.I.). The development of A.I. techniques 

has given computers the ability to adapt and learn to complete tasks which were 

previously only possible for humans. 

A.N.N.s have the ability to learn an input pattern and match a desired output so they 

can be trained to classify, recognise (Optical Character Recognition (O.C.R.) etc.), 

predict (weather, stock etc.), optimise (electronic circuit design) and fit data. In this way 

an A.N.N. can model a relationship. If such a relationship is numerically quantifiable 

then an A.N.N. can be trained to recognise it or predict what it might do. A.N.N.s are 

particularly useful for analysing non-linear relationships because they can learn to 

recognise patterns and relationships within the system. Analysis of systems that have a 

linear relationship are best analysed using well-established statistics and probability 

techniques.  

2.3.1 McCullogh-Pitts Neuron 

The first demonstration of a neuron based on the workings of a B.N.N. was presented 

in a paper by the neuroscientist Warren S. McCulloch and a logician Walter Pitts in 

1943 (McCulloch & Pitts, 1943). The McCullogh-Pitts neuron (M.C.P.), also known as 

a Threshold Logic Unit (T.L.U), would become the basis for early research into 

A.N.N.s. In fact, apart from Boolean neural networks, modern A.N.N.s can be traced 

back directly to the MCP neuron (Picton, 2000).  
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Figure 3  McCulloch–Pitts Neuron (MCP) 

Source: Adapted from http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation 

(Rossmcf, 2008) 

The basic concept of the MCP is illustrated in Figure 3 above. The two scientists 

created a very basic model of what they perceived as the functionality of a biological 

neuron. Their system consists of inputs, one output and a processing element (P.E.). The 

P.E. contains a pre-set threshold value and it is actually a linear combiner with a hard 

limiter, Eqn 1. The inputs are split into excitory and inhibitory elements. The excitory 

inputs are positive elements that promote the propagation of the input through the 

system. They have a value of either one or zero (on or off). The inhibitory element can 

prevent this propagation from occurring. The threshold value once exceeded allows the 

input signal to progress to the output. If the inhibitory input is active or switched on 

then the threshold value will never be exceeded but if it is inactive and the sum of 

excitory inputs exceeds the threshold then the MCP neuron will activate. This is similar 

to the firing action of biological neurons where the signal propagates through the axon. 

The formula below describes the functionality of the neuron mathematically. 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = � 1, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑒𝑒𝑗𝑗 ≥ 𝑇𝑇𝑛𝑛
𝑗𝑗=1

0                                                      
 (Eqn 1) 

In 1956, the mathematician, John von Neumann modified McCulloch and Pitts’ 

model by changing the inhibitory inputs to negative values. This meant that those inputs 

could be included in the summation of all inputs and the total would have to exceed the 

threshold before a 1 would result at the output. Von Neumann’s investigations also 

http://www.slideshare.net/rossmcf/comp305-tutorial-1-presentation
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improved on McCulloch-Pitts “circle-free machines” (von Neumann, 1956) by creating 

systems which had feedback loops. His work “extends the logic of constructable machines to a 

large portion of intuitionistic logic” (von Neumann, 1956).     

These systems had shortcomings and could only emulate basic Boolean logic gates. 

They were limited because their architecture could only support systems which were 

linearly separable. These are systems where the 0 outputs can be separated from output 

values of 1 on a hyperplane by one linear partition (Figure 4). An XOR gate could not 

be created because all of the inputs were connected to one PE and the only decision 

which could be made was whether a threshold had been exceeded or not. XOR required 

further processing in the network and some method of tuning the value of the input.     

Donald Hebb, in his 1949 book, The Organization of Behavior, described what is 

now known as Hebb’s Rule or Hebb’s synapse (Hebb, 1949). He proposed that when a 

biological neuron excites a neighbouring neuron the excitory neuron is somehow 

strengthened so it becomes more efficient at exciting the receptor neuron.  He changed 

some fundamental perceptions within neural science and laid the groundwork for 

weighting inputs which is a core tenet of artificial neural learning.    

2.3.2 Perceptron 

The development of the single layer perceptron by Rosenblatt in 1958 didn’t solve the 

XOR problem but it did introduce the concept of summing inputs and weights over time 

and varying the weights relative to the output. His neuron became the first to be 

described by an algorithm. Input data could be classified into linearly separable classes 

for the first time. It was based on the MCP model of a neuron and consisted of inputs 

which were linearly combined and presented to a hard limiter which held the threshold 

value. Because the process was temporal a bias input, fixed at 1, was also applied so 

that at time = 0 the sum of inputs and weights equalled the bias only. The input to the 

hard limiter can be described by the following formula. 

        

∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑛𝑛
𝑖𝑖=1   (Eqn 2) 
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Where  𝑥𝑥 = input, 𝑤𝑤 = weight, 𝑏𝑏 = bias, 𝑎𝑎 = total number of inputs 

The system was capable of classifying two patterns and the output is either 1 or -1, 

which represents each class. These classes can be separated by a hyperplane making 

them linearly separable. The hyperplane is offset from the origin by the bias amount b.  

 
Figure 4  Hyperplane showing decision boundary between a two-class pattern classification 

The perceptron’s ability to update the weights of each input at successive time 

intervals is described mathematically by the formula below. This is known as the error-

correcting learning rule (Rumelhart, Hinton, & Williams, 1986) (Levine, 2000) 

𝑤𝑤(𝑎𝑎 + 1) = 𝑤𝑤(𝑎𝑎) + ƞ[𝑎𝑎(𝑎𝑎)  − 𝑦𝑦(𝑎𝑎)]𝑥𝑥(𝑎𝑎)  (Eqn 3) 
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where 

𝑥𝑥(𝑎𝑎) = the input vector. The first element of which is 1. 

𝑦𝑦(𝑎𝑎) = sgn[𝑤𝑤 T(𝑎𝑎) 𝑥𝑥(𝑎𝑎)]   sgn = signum function  (1 if 𝑥𝑥> 0, 0 if 𝑥𝑥 = 0, -1 if 𝑥𝑥< 0)  

𝑎𝑎(𝑎𝑎)= +1 if 𝑥𝑥 is a member of class 1, -1 if 𝑥𝑥 is a member of class 2 

ƞ = the learning rate, usually a value between 0 and 1 

𝑤𝑤(𝑎𝑎) = the weight vector. The first element of which is the bias value. 

𝑤𝑤(𝑎𝑎 + 1) = the adapted weight vector 

 

2.3.3 Multi-Layered Perceptron 

Rosenblatt’s single layer perceptron is limited to classifying patterns which are 

linearly separable. Despite this his work is of major historical importance and has led to 

the development of neural networks which solve the issues of linear inseparability. His 

work has led directly to the development of the multi-layered perceptron (M.L.P.). 

Figure 5 below illustrates the fundamental structure. 

 

Figure 5 Multi-Layered Perceptron 

Commented [R1]: need to use word  Insert -> equation to make 
look nicer  
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An M.L.P. comprises an input layer, a hidden layer and an output layer. The elements 

in each layer are known as units or nodes. It is fully-connected which means that all the 

nodes in one layer are connected to every node in the successive layer. Because of their 

architecture M.L.P.s have come to be considered as universal approximators which 

means that they will approximate to a desired accuracy any function which is 

measurable (Haykin, 1994).    

 2.3.4 Adaline / Madaline 

Widrow and Hoff of Stanford University developed the ADALINE 

(ADAptiveLINear Element or ADAptiveLInearNEuron) in 1960.  

 

Figure 6  Structure of an Adaline 

 

Figure 6 above illustrates the main components of an ADALINE. It is similar to the 

perceptron but it is trained differently. While the perceptron implemented an error 

correction learning rule to reduce the error of every output to match the desired output 

the ADALINE calculated the Mean Squared Error (M.S.E.) of all the outputs and 

adapted the weights of the inputs continuously. The algorithm follows a steepest descent 

path using an instant gradient calculation and this tends to minimise the mean of the 
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square of the error in the training data (Widrow & Lehr, 1996).   The algorithm can be 

described in several ways mathematically and the following is one such depiction 

        

𝑤𝑤𝑛𝑛+1 =  𝑤𝑤𝑛𝑛 + 2𝜇𝜇𝜇𝜇𝑛𝑛𝑥𝑥𝑛𝑛  (Eqn 4) 

 

where 

𝑤𝑤𝑛𝑛+1 = updated weight 

𝜇𝜇𝑛𝑛 = linear error = 𝑎𝑎𝑛𝑛 − 𝑤𝑤𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛   

𝑎𝑎𝑛𝑛 = desired response 

𝑤𝑤𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 = linear output prior to weight adaptation 

𝜇𝜇 is a parameter used to control stability and the convergence rate 

Although similar to Rosenblatt’s perceptron algorithm there are several marked 

differences. The perceptron rule is non-linear whereas the LMS rule is linear. LMS may 

be used with desired outputs which are both analogue and binary but the perceptron rule 

can only be used with binary outputs.  If a dataset is not linearly separable then a 

perceptron will continue to run ad infinitum and often produces a large error solution. 

LMS yields a low error solution even with linearly inseparable data although 

classification of these patterns is not guaranteed.  

The concept of a multilevel neural network was conceived again by Widrow and Hoff 

in 1960. They named it the MADALINE (Many ADALINE). It comprises three layers, 

input, hidden and output. Each layer is fully connected to the next in that all the outputs 

of each node are connected to each node in the next layer. Because the MADALINE 

uses the signum activation function three learning Rules have been developed. The first, 

Rule 1, was developed in 1962 by Ridgway (Ridgway, 1962) but it was unable to adapt 

the weights between the hidden and output layer. Rule 2 improved on the first and was 

developed in 1987 by Widrow et al. (Widrow, Winter, & Baxter, 1987). Rule 3 was 

developed in 1988 by David Andes (Andes, Widrow, & Wan, 1990) and differs from 



17 
 

Rule 2 by the replacement of the signum in the quantizer with a sigmoid function and by 

adapting the weights of all the nodes at each iteration.   

2.3.5 Minsky & Pappert 

Minsky and Papert’s 1969 book Perceptrons showed that there were a number of 

issues with the work carried out by Rosenblatt and Widrow and Hoff. They proved that 

the perceptron could never evaluate the XOR function because of its inability to 

calculate parity. At the same time several non-neural network researchers (Quillian, 

1968), (Evans, 1967), were demonstrating systems which could possibly emulate human 

cognitive systems.  These factors contributed to the decline of neural network research 

in the late sixties and early seventies. 

 Despite these setbacks several research groups endeavoured to create new neuron 

based paradigms. In 1972 Harry Klopf (Klopf, 1972). Paul Werbos (Werbos, 1974), a 

Harvard P.H.D. student, proposed, in his thesis, the back-propagation algorithm as a 

new method of learning for artificial networks. Back-propagation of errors would 

become the key to solving some of the problems which had plagued researchers but in 

1974 it was not fully appreciated. It would not be until a paper was released in 1986 by 

Rumelhart, Hinton and Williams (Rumelhart, Hinton, & Williams, 1986) that the true 

power of back-propagation would be explored and explained.  In it the authors 

demonstrated why Minsky and Papert’s predictions about the limitations of multi-

layered perceptrons were unfounded.   

2.3.6 Modern Developments 

In 1982 the Finnish academic Tuevo Kohonen (Kohonen, 1982) developed self-

organising maps which use competitive unsupervised learning techniques to map the 

weights to the inputs of a neural network. Complex datasets can be displayed in a 

contoured format which is more easily visualised by humans. 

The cognitron was proposed by Fukushima (Fukushima, 1975) as a multi-layered 

self-organised neural network which used a reinforcement learning technique. It allows 

the neurons in a network to become selective about which input features are more 

important than others.   
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John Hopfield developed his Hopfield Network in 1982 (Hopfied, 1982) after earlier 

work on the Ising model by Little and Shaw in 1974. The network is able to store 

patterns and to recognise these patterns even when they are only partially applied to the 

input. The Hopfield network is especially useful for character recognition. 

Following on from his earlier collaborative work on back-propagation Geoffrey 

Hinton together with Terry Sejinowski invented the Boltzmann machine in 1983 

(Hinton & Sejnowski, 1983).  It utilises a Boltzmann distribution sampling function and 

is a network of neuron-like elements which are connected symmetrically. These 

elements can make random (stochastic) decisions about the on/off nature of their present 

state. Gradient descent has an inherent flaw in that it often is unable to find the required 

solution to some problem. This flaw does not exist in the Boltzmann machine.  

 

2.4 ANN Architecture / Backpropagation 

2.4.1 Introduction 

The architecture of A.N.N.s can be described by the topology of the network, the 

characteristics of the nodes and the rules used in the training process. Several 

architectures have been developed, each with specific capabilities to solve particular 

problems. At a basic level a neural network requires an input layer, an output layer and 

an intermediate hidden layer. Numeric data is presented to the network at the input 

layer. Each input has a variable weight applied to it. The weights in a neural network 

can be considered as being a measure of the strength of the connections between 

neurons. The inputs multiplied by their weights are transferred and summed together. 

After summing all of the weighted inputs together the activation function calculates the 

output of each node. Depending on the system architecture this result can be transferred 

directly to the output layer or used as an input to another A.N.N.. 

 

A.N.N.s are classified as follows: 

Application: classifying, clustering, function approximating, predicting 

Connection type: feed forward (static), feedback (dynamic) 
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Topology: single layered, multi-layered, recurrent, self-organised 

Learning rules: supervised, unsupervised 

Classification requires a supervised learning method where the network’s task is to 

recognise patterns in the input and classify them into pre-set classes. These classes are 

presented to the network as the target output. Speech and handwriting recognition and 

object identification are just some of the applications of classifying A.N.N.s.  

Data mining and compression applications implement A.N.N.s which have been 

trained using an unsupervised learning rule. A target output is not required as the 

network finds patterns in the input data and groups them into clusters. 

A.N.N.s used for function approximation also implement supervised learning 

techniques. Many applications in engineering and science require an approximation of a 

function to describe mathematical relationships within noisy data. 

Predictive systems which use data with a time factor are dynamic and produce 

different outputs depending on the time scale involved.  

Supervised networks are trained to adapt an input pattern so that the required output 

pattern is matched. The network is said to be trained when the weights at each node no 

longer need to be altered to produce the desired output. These weights are stored within 

the network. An A.N.N. of this type can be used to recognise speech, classify data, 

predict weather patterns, decipher handwriting and many more applications.  

Unsupervised networks do not require a pre-set output pattern. Only an input dataset 

is required and the network groups or clusters the input pattern.      

 

 

2.4.2 Summation Function 

Each input to an A.N.N. has a weight associated with it. The weights can be adapted 

by the network and the architecture dictates how this is done. It is the sum of the 
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products of the weights and inputs which has a direct influence on the output. The 

following equation describes the summation function. 

𝑠𝑠𝑜𝑜𝑠𝑠 𝑜𝑜𝑖𝑖 𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑜𝑜𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1   (Eqn 5)  

 

An M.L.P. makes use of the summing function within its hidden layer. The M.L.P. is 

one of the simplest yet effective A.N.N.s. and can be used to fit data, classify and 

predict.  It can be visualised as a cascaded set of single layer perceptrons. Only one 

layer in a single layer perceptron performs any computation whereas all of the layers 

beyond the input layer of an M.L.P. perform some form of computation on the weighted 

inputs.  

2.4.3 Activation and Output 

Once the weights and inputs have been summed together they are fed into an 

activation function within the hidden layer and then on to the output layer. The task of 

the activation (transfer) function is to convert the node input to a node output. Node 

input is the weighted sum of the previous layer’s output. Node output becomes the input 

for the next layer of nodes or the output of the A.N.N. . There are four commonly used 

activation functions: Unit Step, Sigmoid, Piecewise Linear and Gaussian. 

The Unit Step function (Figure 7) is a threshold function in that the total weighted 

input to the function either exceeds or drops short of a certain threshold value. If the 

threshold is met or exceeded then the function outputs a one otherwise the function 

outputs a zero. 
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Figure 7  Step (Threshold) function 

The Sigmoid function can be logarithmic or tangential depending on the required 

output range. The log sigmoid has a range from zero to one while the tan sigmoid’s 

range is -one to +one. Figure 8 below illustrates the functions mathematically and 

visually.  

 

Figure 8  Log and Tangential Sigmoid 
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Sigmoid functions are continuous, increase monotonically, are invertible, can be 

differentiated at all stages and as the net (sum of weights x inputs) approaches +/- 

infinity the output from the function approaches its saturation value asymptotically.   

The piecewise linear transfer function (Figure 9) produces an output consisting of line 

segments. Each segment represents the total weighted output for specified thresholds. 

 

Figure 9  Piecewise linear transfer function 
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Gaussian transfer functions (Figure 10) produce a continuous bell-shaped output. An 

average input value is calculated. The output is classified depending on the input’s 

proximity to the average value. 

 

Figure 10  Gaussian transfer function 

2.4.4 Feed forward and Feedback Neural Networks  

A.N.N.s can be classified into two main types: feed-forward and feed-back.  

Feed-forward neural networks are characterised by the following criteria: 

They consist of an input layer, one or more hidden layers and an output layer. The 

hidden layer is connected within the network to the input and output layers. There is no 

external influence on the hidden layer.  

They are fully connected in that the output from each node in each layer is connected 

to every node in the succeeding layer. The signal is fed through the network in one 

direction from input to output.  

Connections between nodes in each layer do not exist. Each node is independent of 

every other node in a particular layer. 

Feed-forward neural networks use the backpropagation learning algorithm. The 

A.N.N. learns to produce a desired output by manipulating the weights at each node 
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input by propagating the system error back through the network. This is achieved by 

repeating the process through a series of cycles. The algorithm calculates the gradient 

descent of the system to ensure the quickest decrease of the error. These A.N.N.s are 

used for classification and prediction. 

Competitive networks are used to cluster unseen data. They comprise a Hemming 

network and a Maxnet. A Hemming network is presented with an input vector and its 

goal is to calculate how closely the vector of its weights is to that input vector. Within a 

Maxnet each node, which is connected to every other node, competes with the others to 

find the node which has the maximum output. Combining these two networks together 

creates a network which when trained forms clusters of the input data so that any unseen 

data will be grouped closest to its most relevant cluster. Mortgage companies for 

example use this particular type of A.N.N. to risk assess new customers before issuing a 

mortgage.       

Feed-back A.N.N.s, also known as recurrent neural networks (R.N.N), have a similar 

architecture to feed-forward networks but the interconnectivity between nodes is 

different. Each node in the hidden layer can be connected to any other node in any layer, 

even to itself. At specific time intervals each node in the hidden layer activates all of its 

connected nodes. The weighted sum of the inputs at the input layer and the inputs to 

each node is calculated. The result is fed through an activation function. This process is 

able to use the values from previous events to compute the present activity vector and 

store these events in memory. R.N.N.s are used for vision systems, speech recognition 

and many more applications which require time-based interpretation of data.     

2.5 ANN Training Algorithms and Optimisation Techniques 

Many training algorithms exist and can be grouped into different types: clustering, 

Bayesian, decision tree, regression, instance-based and deep-learning. For the purposes 

of this thesis I will discuss some relevant backpropagation algorithms. Training 

algorithms can be implemented in batch mode or incrementally. With batch mode all of 

the inputs are presented to the network before the weights are updated while in 

incremental training the weights are updated after each input is presented to the 

network. These algorithms perform computations which propagate back through the 

network using the chain rule and partial differentiation to alter the weights at each node. 
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They all make use of a calculation of the Jacobian, gradient or Hessian(H) values. 

Jacobian is the matrix of first partial derivatives, gradient is the vector of first partial 

derivatives and the Hessian is the matrix of second partial derivatives.    

2.5.1 Backpropagation 

The error backpropagation algorithm is a major element of A.N.N.s. Although 

developed in 1974 it was not fully appreciated until 1986 when Rumelhart and his 

colleagues (Rumelhart, Hinton, & Williams, 1986) explained the concept fully. It is the 

reason why A.N.N.s are such powerful tools today. It works by calculating the 

difference or error between target and actual output of a network and propagating this 

error value back through each layer and each node of the network. When the 

propagation reaches the input layer the algorithm uses a differential equation to alter the 

original input weights and the whole process begins another iteration forward through 

the network. The process continues until the desired output has been reached to within 

certain pre-set limits. Backpropagation uses partial differentiation to calculate the error 

at each layer starting with the error at the output and working backwards.     

2.5.2 Scaled Conjugate Gradient 

Scaled Conjugate Gradient (S.C.G.) is a supervised learning algorithm developed by 

Martin Møller (Møller, 1993). It is a second order Conjugate Gradient (C.G.) algorithm. 

Backpropagation makes use of the gradient descent algorithm. By using partial 

differentiation to calculate the steepest gradient of an error function the minimum error 

can be found iteratively. During this process a line search is required to first find the 

line along which the gradient is steepest and then to calculate the size of the steps to be 

taken to reach the local minimum. S.C.G. manages to find the local minimum without 

the need for a lengthy line search.  

2.5.3 Newton’s Method 

Newton’s method, known also as the Newton-Raphson method, is an algorithm which 

finds the roots of a function. It utilises the first terms, up to the second order, of a Taylor 

series of a function around the area of a possible root. When used within an A.N.N., 

Newton’s method finds the minima of the error function and ultimately leads to the 

global minimum. Newton’s method can be described by Eqn 6 below. 
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                                 𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 − (𝐻𝐻(𝑥𝑥𝑛𝑛))−1𝛻𝛻𝑖𝑖(𝑥𝑥𝑛𝑛)  (Eqn 6) 

where 

𝑥𝑥n+1= iterative update 

𝐻𝐻(𝑥𝑥n)= Hessian matrix of 2nd order derivatives of the Taylor series about point 𝑥𝑥n 

𝛻𝛻f(𝑥𝑥n)= the gradient, the1st order derivative of the function at 𝑥𝑥n 

 

 

This algorithm performs better than the gradient descent algorithm because it tries to 

find the global minimum and not just a local minimum. If the surface of the error 

function is quadratic, if it has one minimum, then large steps can be taken to find the 

minimum. If the surface contains multiple minima then smaller steps can be taken while 

advancing towards the global minimum. Multi-curved surfaces will produce higher 

values for the second order derivatives. It is clear that movement is in the negative 

direction of the gradient,−𝛻𝛻𝑖𝑖(𝑥𝑥𝑛𝑛).The major drawback of this algorithm is that the 

inverse of the Hessian matrix must be calculated. This requires a lot of computation and 

can slow the whole process down considerably.   

2.5.4 Quasi-Newton 

The Broyden-Fletcher-Goldfarb-Shanno (B.F.G.S.) algorithm is the most popular of 

the Quasi-Newton methods. It is similar to Newton’s method but improves upon it by 

using only the first-order derivatives of the error function, thus mitigating the 

requirement to calculate the inverse of the Hessian matrix. Instead an approximation of 

the Hessian matrix is calculated over several steps ensuring that the approximation 

remains positive-definite. As long as the matrix is positive-definite step iterations to 

find the global minimum will always be in the descent direction. In the case of large 

networks with thousands of weights, storage of the approximate Hessian matrix is still 

an issue because of the size of the matrix (Bishop, 1997, pp. 288-289). 
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2.5.5 Gauss-Newton 

The Gauss-Newton method is another technique for circumventing the calculation of 

the Hessian matrix by generating an approximation of it. In nonlinear systems, the 

Hessian matrix is not always positive definite therefore the curve of the error function 

may not be concave down. When this is the case Newton’s methods may iterate in the 

gradient ascent direction thus moving away from the global minimum. The Gauss-

Newton method uses only the first order derivative gradient vector. The assumption is 

made that around the global minimum of an error function the error between target and 

actual output values averages to zero. Therefore the second order derivative values 

reduce to zero and by using the outer-products of the gradient vector an approximation 

of the Hessian matrix can be produced. 

2.5.6 Levenberg-Marquardt 

The Levenberg-Marquardt (L.M.) algorithm is another standard algorithm for solving 

nonlinear problems. It is a pseudo second order function which uses two minimisation 

functions, gradient descent and Gauss-Newton, to minimise the sum of squares error. 

L.M. uses gradient descent methods when the error is distant from the minimum value 

but switches to Gauss-Newton methods as the error function gets closer to the minimum 

value. It uses an approximation of the Hessian matrix (Lourakis, 2005), a second order 

square matrix of the system error with respect to the weights and biases. This 

approximation is what makes the L.M. algorithm pseudo second order because the sum 

of the outer products of the gradients is used to estimate the Hessian (Roweis, nd). Eqn 

7 describes the L.M. algorithm (Gavin, 2013). 

                                     [𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽 + 𝜆𝜆𝜆𝜆 ]ℎ𝑙𝑙𝑙𝑙 =  𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 − ŷ)  (Eqn 7)  

 

where 

𝐽𝐽 = the m x n Jacobian matrix [ 𝜕𝜕ŷ/𝜕𝜕p ], first derivatives of the system error as a 

function of the weights and biases. 

ŷ = output data 

𝑦𝑦 = input data 
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𝑊𝑊 = weight matrix 

𝐽𝐽𝑇𝑇 = Transpose of 𝐽𝐽 

ℎ𝑙𝑙𝑙𝑙 = direction of steepest descent 

𝜆𝜆 = identity matrix 

𝜆𝜆 = calculated from eigenvalues of the Hessian approximation, 𝐽𝐽𝑇𝑇𝐽𝐽 

When 𝜆𝜆 is small a Gauss-Newton update of the weights is used but when 𝜆𝜆 is large 

then a gradient descent update is performed. 

 

2.6 Over-fitting and Generalisation 

It is possible for an A.N.N. to over-fit on the training data. This means that the 

A.N.N. will over-train on the input data and learn to recognise only the pattern in that 

data. This is an undesirable outcome as the A.N.N. will not be able to generalise to 

recognise patterns in previously unseen data. Even if the training error is small, if the 

network over-fits then the error may be large for unseen data making the A.N.N. 

unusable. There are several ways to avoid this issue. The most common avoidance 

measure is to split the training dataset into three sections, one for training, one for cross-

validation and one for testing. The training set is used by the network to update the 

weights and calculate the error gradient. During the early stages of training, the M.S.E. 

for the training set generally matches that for the cross-validation set. As training 

progresses the error for the cross-validation set tends to increase as the A.N.N. begins to 

over fit the data. If the difference in the training and cross-validation error exceeds a 

certain threshold a set number of times then the training is stopped and the point where 

the lowest error difference occurred is taken as the point where the A.N.N. was 

optimally trained. The test set is used in the training process but the error is only used as 

an indicator of acceptable data spread across the three sets. 

Another way to avoid over fitting is to make the A.N.N. just large enough to map the 

data. It is difficult to design an adequate A.N.N. until some training has been completed. 

Generally several different sizes of networks are trained before the design is finalised. If 
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the number of samples in a training set is large compared to the number of parameters 

then over-fitting will not be a concern. It is possible to increase the training set to 

mitigate against over-fitting. 

Yet another method to avoid over-fitting is regularisation. The main goal of a neural 

network is to try and fit a smooth weight curve through the data and not to over-fit by 

altering the weights so that the curve fits the data exactly. Regularisation involves 

altering the weight vector by adding the sum of individual weights to the error 

calculation thus penalising weights which are large. L1 regularisation adds the sum of 

the absolute weight values and L2 regularisation adds the sum of the squared weight 

values. Trial and error dictates which form of regularisation should be used. L1 does not 

work well with training algorithms which use calculus to estimate the gradient and L2 

can be applied to any form of training algorithm. The overall effect of regularisation is 

to reduce an A.N.N.’s tendency to over-fit the training data (McCaffrey, 2015). 

2.7 ANN Implementation 

2.7.1 Data Mapping 

This research proposes using A.N.N.s to aid in the landing of a U.A.V. on a ship. To 

this end two different problems were tackled. The first was to classify a dataset of 

coordinate values into a dataset of orientations. The second was to classify a dataset of 

orientations into a dataset of optimal landing times. The configuration used to solve the 

first problem was a two-layer feed-forward network with hyperbolic tangent (tanh) 

sigmoid transfer function in the hidden neurons and linear transfer function in the output 

neurons. This configuration will fit datasets of numeric inputs and a set of desired 

numeric outputs. The training algorithm chosen was the Levenberg-Marquardt 

backpropagation algorithm. Figure 11 is a representation of the system. 

 

Figure 11  A.N.N. configuration for mapping input to target output 
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The system comprised twenty-four input neurons, fifteen hidden neurons and four 

output neurons. 

2.7.2 Pattern Recognition 

A two-layer feed-forward network, with sigmoid hidden and output neurons. Trained 

using scaled conjugate gradient backpropagation algorithm.  

 

Figure 12  A.N.N. configuration to classify vectors 

The system comprised twenty input neurons, fifteen hidden neurons and one output 

neuron. 

 

2.8 Conclusion 

This overview of A.N.N.s serves to illustrate the many types of systems which have 

been developed and the multitude of back-propagation optimisation algorithms which 

can be applied to them. It has shown how A.N.N.s can be applied to the proposed 

research question as they have the ability to map patterns in non-linear data and to 

classify these patterns. The review has also shown that the A.N.N.s deployed to model 

the orientation of a ship during several sea-states need not be overly complex. 

Deployment of standalone A.N.N.s to tackle separate phases mitigated the requirement 

for cascaded systems and they were trained quickly and reliably with a high degree of 

accuracy.   

Cross-validation is a method of monitoring the deviation between a training set 

M.S.E. and the M.S.E. of a subsample of the same training set. It is a mechanism to 

allow an A.N.N. to be trained by halting the training if the M.S.E. deviation exceeds a 
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threshold. Throughout the training process cross-validation was employed to ensure the 

trained A.N.N. would be able to generalise and not over-fit on the training data. 
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Chapter 3  The implementation of Artificial Neural 

Networks and Other Methods for Vehicle Control 
3.1 Introduction 

Autonomous control of a vehicle is a long-established technology. In 1914, Lawrence 

Sperry demonstrated an autopilot system for aviation which  utilised gyroscopes and 

attitude sensors  to maintain the aircraft’s heading and altitude via hydraulically 

operated rudder and elevators. As part of their demonstration the pilot and mechanic 

walked on the wings while the plane flew itself (Keefe, 2014). In 1920 the motor tanker, 

J.A. Moffett jnr. became the first ship to use an autopilot (O'Callaghan, 2011). In 1922 

the Russian American mathematician Nicolas Minorsky published a paper on the 

stability of auto-piloted ships (Minorsky, 1922). In 1947 a United States Air Force 

(U.S.A.F.) C-54 aircraft became the first auto-piloted vehicle to take off, complete a 

transatlantic flight and land completely unaided by the pilot (Kirchman, 2013). 

The advent of computers heralded a new era in autonomous vehicle control. Since the 

1940’s, when the McCullogh-Pitts neuron was unveiled, A.N.N.s have been trained to 

replicate human activities often surpassing their human counterparts. The phrase 

machine learning was coined to describe the process. A recent example of computers 

exceeding human capabilities is in the DeepMind company whose engineers wrote a 

computer algorithm that learned to play forty-nine arcade games. “The computer became 

skilled enough to beat a professional human player” (Gibney, 2015) in more than fifty percent of 

the games. In the past, machine learning, a branch of A.I., often required greater 

computing power than was available but with today’s high speed central processing 

units (C.P.U.s) complex machine learning algorithms can be deployed. Deep-learning, 

which is a separate branch of A.I., utilises unsupervised learning techniques to enable 

A.N.N.s to be trained using large training datasets. I.B.M. recently released an article 

detailing a new microchip they have developed specifically for deep-learning solutions 

such as object recognition from frames of live video. The chip they developed consumes 

a fraction of the energy of conventional C.P.U.s. Although not directly comparable, 

tests have shown this chip to be approximately one hundred times faster than any of 

today’s supercomputers (Merolla, et al., 2014, p. 671) when tasked with the same 

problem.  
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Today companies like Google and Facebook use deep learning algorithms to sift 

through huge volumes of data to find patterns of human behaviour. Difficult processes 

like speech and face recognition are now commonplace in machines, SIRI in Apple 

iPhones (Apple, 2015) for voice recognition and Facebook uses face recognition to tag 

photos (Facebook, 2015). A.N.N.s play a major part in the deployment of these 

technologies into our everyday lives. Augmented by advances in laser and other optical 

technologies, A.N.N.s are an excellent tool for autonomous vehicle control because of 

their ability to recognise and define trajectories along which vehicles should travel 

(Pomerleau, 1989), (Dierks & Jagannathan, 2010), (Nguyen & Widrow, 1989).  

A.I. is set to become even more conspicuous in society with the release of Google 

cars (Metz, 2015), Tesla cars (Chang, 2015), Formula E Roborace (Burgess, 2015), 

Mercedes-Benz F105 (Mercedes-Benz, 2015) and obstacle avoiding drones (Darrow, 

2015) which all employ A.N.N.s to aid the control of vehicles. Even into the future and 

on different planets humans are endeavouring to implement A.I. to help navigate 

landing vehicles during the proposed 2018 ExoMars mission (Vago, Lorenzoni, 

Calantropio, & Zashchirinskiy, 2015).  

3.2  Analysis 

 

3.2.1 Vehicle control using Artificial Neural Networks. 

This section examines the different uses of A.N.N.s for the control of vehicles. A 

description of the seminal works follows.  The A.N.N.s’ roles varied in these 

experiments, from control to image processing to simulation and trajectory mapping.  

 

3.2.1.1 ALVINN Autonomous Vehicle in a Neural Network 

One of the earliest successful attempts to autonomously drive a vehicle controlled 

only by neural networks was the ALVINN project at Carnegie Mellon University in 

1989 (Pomerleau, 1989). ALVINN is an acronym for Autonomous Land Vehicle In a 

Neural Network. Pomerleau developed a system of training a three-layer back-

propagation A.N.N. using images of simulated roads. The input layer had 1217 inputs 

which comprised data from a laser range finder and data from a video camera. The 
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hidden layer had 29 units and the output layer had 46 units. The output consisted of a 

vector of values, mostly zeros, but with a peak numeric value at the centre and 

decreasing values left and right of this. The middle peak value represented the keep 

straight command while the gradient of values either side represented the sharpness of 

turn required to centre the vehicle. The trained A.N.N. learned to differentiate between 

roads and non-road sections of images and with the help of a feedback element was able 

to learn when the road was darker or lighter than the off-road sections. The A.N.N. 

could learn to differentiate between roads and non-roads within half an hour. This was 

far quicker than similar vision based research in the same field which took months of 

algorithm development and parametric tuning. 

Ultimately the trained A.N.N, was able to control a modified vehicle along a roadway 

for 400 metres at a speed of 0.5 m/s (~1.8 km/h). It proved that an A.N.N. could be 

trained to control a vehicle by learning dynamically no matter what the input system 

was and combining real images with simulated images helped to prevent over-learning.  

 

3.2.1.2 Neural Networks for Self-Learning Control Systems 

Another much cited use of A.N.N.s for vehicle control is the truck reverser simulation 

developed by Nguyen and Widrow (Nguyen & Widrow, 1989). This is another 

implementation of an A.N.N. which is used to map a non-linear dynamic system. In this 

case one A.N.N. learned the characteristics of a truck and trailer’s dynamics and 

emulate them and another A.N.N. learned to control the emulator and steer a reversing 

truck. The research team used Adaptive Linear Networks (AdaLine), in a two-layer 

configuration for both emulating and controlling the truck and trailer. The system 

learned to “solve sequential decision problems” (Nguyen & Widrow, 1989, p. 22).  

 

3.2.1.3 Adaptive Nonlinear Controller Synthesis for UAV 

Another neural network system for U.A.V. flight control was developed by Prasad 

and his research group in the Georgia Institute of Technology in 1999. Developed as an 

alternative to expensive, yet proven, traditional flight control systems the team used 

neural networks to address the non-linear issues associated with developing new 
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aircraft. As with previous research N.D.I. combined with A.N.N.s is used to “compensate 

an imperfect dynamic inversion model” (Prasad, Calise, Pei, & Corban, 1999, p. 119). A non-

linear simulation model of a Yamaha R-50 unmanned helicopter was used to create a 

dataset of flight dynamics. The inverted data was fed into an M.L.P. neural network. 

The results of this research illustrated that neural networks again proved to be a fast-

learning and inexpensive tool for “direct adaptive control of non-linear systems” (Prasad, 

Calise, Pei, & Corban, 1999). 

 

3.2.1.4 Autonomous Helicopter Hover Using an ANN 

Many more implementations of A.N.N.s for U.A.V. flight control have been 

researched and successfully implemented. Buskey, Wyeth and Roberts developed a 

system for transmitting hover commands to a U.A.V. (Buskey, Wyeth, & Roberts, 

2001). A feed-forward A.N.N. using a back-propagation supervised learning algorithm 

was trained to map the relationship between the Inertial Navigation System (I.N.S.) of 

the aircraft and the control actuators. They successfully trained the A.N.N. to control the 

U.A.V.’s hover. 

 

3.2.1.5 Autonomous Flight Control for UAV using Neural Networks 

Yet another neural network controlled flight system for U.A.V.s was investigated by 

Nakanishi et al. in Kyoto University in 2002.  By employing trained neural networks in 

combination with online (real-time) neural network training a highly reliable control 

system was developed. The team was tasked with improving on the linear Proportional 

Derivative (P.D.) controller for the Yamaha RMAX U.A.V. to ensure more reliable 

autonomous flight. A non-linear system with n degrees of freedom can be described by 

the following equation: 

�̈�𝑦 = 𝑖𝑖(𝑦𝑦, �̇�𝑦,𝑜𝑜) 

 

where 𝑖𝑖 is a function describing the system 
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𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 �̇�𝑦 are state variables and 𝑜𝑜is the control variable  

 

𝑈𝑈 represents pseudo-control variables so that 

𝑈𝑈 = 𝑖𝑖(𝑦𝑦, �̇�𝑦,𝑜𝑜) 

If 𝑖𝑖 is a known and invertible function then the map between control and output can 

be linearised by the following equation: 

𝑜𝑜 = 𝑖𝑖−1(𝑦𝑦, �̇�𝑦,𝑈𝑈) 

The purpose of this research was to train a neural network to estimate a function 

which was invertible but unknown. Once trained the A.N.N. was employed “as the 

controller for linearizing the plant” (Nakanishi, Hashimoto, Hosokawa, Sato, & Inoue, 2002, 

p. 781) and so the U.A.V.s power system could be controlled linearly when reacting, for 

example, to any sudden changes in wind-speed. Four independent neural network 

controllers (elevator, aileron, yaw and altitude) were trained and tested. The methods 

developed in the research improved the reliability of autonomous U.A.V. flight and also 

“can be easily applied to general control systems design” (Nakanishi, Hashimoto, Hosokawa, 

Sato, & Inoue, 2002, p. 782). 

 

3.2.1.6 Neural Network Based Control of a Quadrotor UAV 

Controlling the take-off, landing and hovering of a quadrotor U.A.V. using an A.N.N. 

and deploying it in a microcontroller was investigated by Dunfied, Tarbouchi and 

Labonte in 2004. By Flying the U.A.V. manually and recording the output from several 

sensors an input training dataset was created. The output training dataset consisted of 

the human pilot’s commands. This process of data collection is similar to Singleton’s, 

discussed earlier. Although autonomous hover was not physically achieved, the team 

concluded that improvements in sensor data and the inclusion of height control data that 

“autonomous hovering would be possible” (Dunfied, Tarbouchi, & Labonte, 2004, p. 1548). 
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3.2.1.7 Auto-Landing Guidance System for Smart UAV 

Neural networks have also been applied to the complex field of automatic Smart 

U.A.V. landing (Min, Shin, Tahk, Kim, & Kim, 2006). In this case the research 

focussed on auto landing a tilt-rotor aircraft by controlling the aircraft on a 

predetermined flight path. A nonlinear Smart U.A.V. simulation model was developed. 

Utilising a Sigma-Phi Neural Network (S.P.N.N.) adaptive control signals were input 

and a precise trajectory tracking system was developed.  

 

3.2.1.8 UAV Modelling by Supervised Neural Networks 

San Martin (San Martin, Barrientos, Gutierrez, & del Cerro, 2006) and his colleagues 

developed a procedure for dynamically identifying complete systems, like the flight 

system of a U.A.V., using supervised neural networks. They simulated a U.A.V.’s flight 

characteristics. This was achieved by training a separate neural network for each stage 

of flight: take-off, landing and flying. Using real data from a radio controlled helicopter 

they created a dataset and trained a network to simulate pitch, roll and yaw and used this 

data to train another network to simulate the aircraft’s position. Comparing training 

using M.L.P. and Radial Basis networks highlighted how different elements of flight 

required different networks to optimise simulation. They concluded that neural 

networks are a “valid tool for system identification” (San Martin, Barrientos, Gutierrez, & del 

Cerro, 2006, p. 2502).  

 

3.2.1.9 Dual Neural Network Controller for UAV 

Similar research was completed by Puttige, Anavatti and Samal using a Dual Neural 

Network (D.N.N.) to create a U.A.V. controller. They concluded that the D.N.N. is 

more accurate and faster than a conventional P.I.D. controller (Puttige, Anavatti, & 

Samal, 2009).  
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3.2.1.10 Neural Network Control of Quadrotor UAV Formations 

Another interesting use of A.N.N.s to control U.A.V.s was presented in research 

carried out by Dierks and Jagannathan in 2009. Based on spherical coordinates they 

developed a control system where multiple U.A.V.s could follow one leader U.A.V.. 

The A.N.N. was trained to learn all of the dynamics of a U.A.V. including aerodynamic 

friction. They developed a formation control law using A.N.N.s “which allows each follower 

to track its leader without the knowledge of dynamics” (Dierks & Jagannathan, 2009, p. 2996). 

 

3.2.1.11 Output Feedback Controller of UAV using Neural Networks 

Dierks and Jagannathan also developed a U.A.V. nonlinear controller using A.N.N.s. 

Several networks were trained separately to deal with the various aspects of the 

U.A.V.’s flight patterns. Four control inputs were used to train the A.N.N. and the 

aircraft’s six D.o.F. were successfully mapped. Again the controller outperformed 

conventional linear controllers (Dierks & Jagannathan, 2010).  

 

3.2.1.12 Neural Network Optimisation for Autonomous Auto-rotation of UAV 

Autonomous autorotation using a Nonlinear Model Predictive Controller (N.M.P.C.) 

coupled with a Recurrent Neural Network (R.N.N.) to handle nonlinear optimisation 

was achieved by Dalamagkidis and Valavanis in 2011. Auto-rotation in a rotorcraft 

occurs when it loses power and is forced to descend using only the air currents 

generated by its rapid descent. These air currents spin the rotors and a cushioned 

landing can be achieved by raising the collective as the aircraft nears the ground thus 

reducing the sink rate. Having trained the A.N.N. the researchers concluded that an 

A.N.N. assisted autonomous auto-rotation could safely land a U.A.V. regardless of the 

U.A.V.’s initial state and the amount of noise present (Dalamagkidis & Valavanis, 

2011).  
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3.2.1.13 Optimised Fuzzy Logic Training of ANN for Autonomous Robotics 

Using optimised fuzzy logic training of A.N.N.s these researchers (Alzaydi, 

Vamaraju, Mukherjee, & Gorchynski, 2011) successfully trained an autonomous 

wheeled vehicle to steer itself around two separate tracks. They proved that it is possible 

to use a fuzzy logic controller to train an A.N.N. in real-time and that real-time 

autonomous navigation could be achieved with minimal computational power and 

without complex control strategies.  

 

3.2.1.14 Autonomous Radio Controlled Car 

David Singleton also developed a neural network vehicle control system (Singleton, 

2013). He used a child’s remotely controlled car and manipulated the hand-held 

controller to accept signals from an Arduino Uno. To train the network he created a 

dataset. This was done by controlling the car himself and using an android phone to 

transmit images to a pc to record the path taken along a track made up of A4 sheets. The 

images were fed wirelessly to the pc. The brightness intensity value of 25345 pixels 

from each image was stored sequentially. These were used at a later stage as input to the 

A.N.N.. The actual network architecture he used was a Convolution Neural Network 

(C.N.N.). C.N.N.s are similar to an M.L.P. except they have sub-sampling layers prior 

to the fully connected section. These networks are often used for image recognition 

because the sub-layers can extract basic visual features and recombine these in the 

upper layers (Hijazi, Kumare, & Rowen, 2015). The hidden layer comprised sixty-five 

units and the output layer consisted of four outputs; left, right, forward and reverse. 

Once trained the A.N.N. was deployed to drive the car along a new track. The actual 

control mechanism relied on the Arduino board to receive a signal from the A.N.N. and 

transmit the correct motion command to keep the car within the track. Figure 13 below 

shows the RC car driving itself along a track, the image on the left is from the camera’s 

perspective.
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Figure 13  Neural Network controlled car 

Source: http://blog.davidsingleton.org/nnrccar/ (Singleton, 2013) 

This project demonstrates the ability of A.N.N.s to quickly learn the dynamics of 

vehicular motion.  

 

3.2.1.15 Adaptive Neural Network for Quadrotor UAV 

The control of non-linear systems as if they were linear systems is a process known as 

Non-Linear Dynamic Inversion (N.D.I.). Flight dynamics data is inverted and a system 

of countering the non-linearities is employed. Using neural networks to counter non-

linearities without the need for apriori knowledge of the full flight control system has 

brought them into the spotlight (Lakshmikanth, Padhi, Watkins, & Steck., 2014). An 

adaptive neural network system was created by Hana Boudjedir and his colleagues to 

stabilise a quadrotor U.A.V. while under the influence of a sinusoidal disturbance 

(Boudjedir, Yacef, Bouhali, & Rizoug, 2012). A neural network was used to adaptively 

cancel in-flight inversion errors. Using two Single Hidden Layer neural networks 

(S.H.L.N.N.) in parallel any disturbance could be countered. This was achieved by 

feeding the disturbance data through one supervised learning S.H.L.N.N. and this could 

be equalised by another unsupervised learning S.H.L.N.N.. The findings of the research 

were tested by simulating Quadrotor control and they obtained high level performance 

http://blog.davidsingleton.org/nnrccar/
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and zero weight drift.  

 

3.2.2 Machine Vision Control Systems 

Autonomous vehicles often rely on machine vision techniques for obstacle avoidance 

(Turk, Morgenthaler, Gremban, & Marra, 1988), range finding (Sheng, Chen, Xie, Bai, 

& Yang, 2008), road-edge detection (Kong, Audibert, & Ponce, 2010), dataset creation 

(Singleton, 2013) and lane discipline (Farooq, Gu, Amar, & Asad, 2013). Machine 

vision has also been successfully implemented in the control of U.A.V.s. The following 

section discusses this in detail.  

 

3.2.2.1 3D Vision Based Landing Control of a Small Scale U.A.V. 

Using binocular 3D vision Yu et al. researched the autonomous landing of a U.A.V.. 

They were able to measure the range between a U.A.V. and a landing pad. They were 

also able to measure the height above the pad using 3D vision and a plane-fitting 

algorithm which they developed. A controller handled the two-stage landing 

manoeuvre. They successfully landed the U.A.V. using this methodology (Yu, Nonami, 

Shin, & Celestino, 2007).   

 

3.2.2.2 Autonomous Landing & Ingress of M.A.V. using Monocular Vision 

The problems associated with M.A.V.s entering buildings and  navigating through 

them was addressed by Roland Brockers, Patrick Bouffard and their colleagues at 

Caltech and Berkeley. This research tackled the issues of “vision based autonomous landing 

and ingress using a camera for two urban scenarios” (Brockers, Bouffard, Ma, Matthies, & 

Tomlin, 2011, p. 1). To detect targets and estimate the M.A.V. motion the team 

employed multiple homography decomposition. Homography is an imaging analysis 

method where similar points on a target are compared from different perspectives, two 

in this case, and both images are rendered together to yield an estimation of perspective 

(Criminisi, Reid, & Zisserman, 1997). Figure 16 illustrates the process of feature 

tracking.  
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Figure 14  Homographic target detection: (a) multiple homography detection when landing (b) 

detection of an opening for ingress to a building 

Source: (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 4) 

 

Using a monocular camera the team successfully autonomously landed an M.A.V. on 

an elevated platform and also enabled the M.A.V. to autonomously enter a building 

through an opening of 60x60cm. 
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Figure 15  Once airborne the (a) autonomous landing and (b) autonomous ingress algorithm 

functions in three separate stages: “Detection, Refinement, and Approach” 

 (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 5) 

Source: Adapted from (Brockers, Bouffard, Ma, Matthies, & Tomlin, 2011, p. 5) 
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3.2.2.3 On-board Vision System for Autonomous Control of M.A.V. 

Monocular on-board vision was used for orientation estimation to find the “H” of a 

landing pad in a noisy environment and track it. The data from the orientation 

estimation was input to a controller which autonomously landed a Micro U.A.V. 

(M.A.V.). Processing up to sixty frames per second the research team’s software was 

able to find the landing area and calculate the M.A.V.’s relative orientation to it, Figure 

14. 

 

 

Figure 16  M.A.V. in hover position and “H” tracking 

Source: (Yang, Scherer, Schauwecker, & Zell, 2013) 

 

Orientation calculations were done using projective geometry. From a hover position 

the M.A.V. successfully landed autonomously. The same group of researchers also used 

on-board monocular vision and the Simultaneous Localisation and Mapping (S.L.A.M.) 

algorithm to enable an M.A.V. to navigate to a predefined helipad within the S.L.A.M. 

system map and land on it. Figure 15 illustrates the trajectory of the M.A.V. from take-

off to landing. The landing area is on the left and towards the back of the map. 
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Figure 17  Take-off, flight trajectory and landing 

Source: (Yang, Scherer, Schauwecker, & Zell, ND) 

Autonomous flight and landing of an M.A.V. was shown to be possible and landing 

area orientation estimation was verified by an external tracking system (Yang, Scherer, 

Schauwecker, & Zell, ND). 

 

3.2.2.4 Autonomous take-off, tracking and landing of a UAV on an Unmanned 

Ground Vehicle. 

Yet another implementation of monocular vision based control on a U.A.V. was 

carried out by Hui et al (2013). They successfully tracked and landed the U.A.V. on an 

Unmanned Ground Vehicle (U.G.V.) using vision-based techniques. Fundamentally, 

while using a monocular on-board camera they were able to find a circular shape on the 

U.G.V., track it and eventually land on it (Hui, Yousheng, Xiaokun, & Shing, 2013). 

3.2.2.5 Visual Autonomous Ship Board Landing of a Vertical Take-Off and Landing 

(V.T.O.L.) Unmanned Aerial Vehicle.    

Landing a U.A.V. on a ship using an on-board camera as the main sensor was 

successfully completed by Sanchez-Lopez et al in 2013. A robotic platform was 
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employed to simulate several sea-states (see Table 6 in Appendix A for a table of sea-

states). Image processing of the video feed from the colour camera on board allowed the 

team to measure the helipad pose with respect to the camera. The main goal of this 

research was to develop a robust pose measurement system using an on-board colour 

camera as the only sensor. This was successfully achieved (Sanchez-Lopez J. L., 

Saripalli, Campoy, Pestana, & Fu, 2013). 

 

3.2.2.6 Autonomous Approach & Landing of UAV Using Monocular Cameras 

 

   Autonomous approach and landing was successfully deployed by Dotenco et al., again 

with the aid of monocular vision. One forward facing camera initially detects a landing 

pad and the distance between it and the U.A.V. is calculated. Once the U.A.V. is within 

range of the landing pad a downward facing camera is used to detect the landing area 

and the pose of the pad with respect to the U.A.V. is calculated. The U.A.V. then 

autonomously lands on the pad. All of the image processing was completed in real-time 

(Dotenco, Gallwitz, & Angelopoulou, 2015). 

 

3.2.2.7 Landing Site Targets and Constraints for ExoMars 2016 Mission 

Image processing of landing sites will be implemented in 2016 on Mars when the 

ExoMars mission will attempt to land a 600kg (Portigliotti, Dumontel, Capuano, & 

Lorenzoni, p. 1) demonstration craft in preparation for a 2018 attempt to land two rover 

modules. A stereo camera and photoclinometry techniques coupled with high resolution 

image processing will be used to assess the suitability of landing areas as the landing 

module approaches the Martian surface (Portigliotti, Dumontel, Capuano, & Lorenzoni, 

ND). Figure 18 illustrates a proposed descent procedure for the 2018 mission. This is 

yet another example of vision based landing zone assessment.  
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Figure 18  ExoMars 2018 proposed descent procedure 

Source: (Vago, Lorenzoni, Calantropio, & Zashchirinskiy, 2015, p. 539) 

 

3.2.2.8 Landing Assistance & Evaluation using Image Processing 

Autonomous landing of a U.A.V. on a random landing site using computer vision 

techniques was investigated by Deshmukh and Mali in 2015. Having determined the 

altitude of the U.A.V. the landing areas under investigation were segmented into blocks. 

Through a process of edge detection within images of feasible landing areas and 

grouping of features like grass, water etc. the researchers were able to identify suitable 

landing areas from the images alone (Deshmukh & Mali, 2015).  
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3.2.3 Algorithm Based Control Systems 

Many areas of research have employed algorithms to control unmanned vehicles. This 

section contains a brief overview of some of the relevant research. 

 

3.2.3.1 Trajectory tracking for UAVs with velocity & heading rate constraints 

Employing a Control Lyapunov Function (C.L.F.) Ren and Beard (2004) tackled  “the 

problem of constrained nonlinear trajectory tracking control” (Ren & Beard, 2004, p. 706) of 

U.A.V.s. Using an input constrained model of a U.A.V.’s kinematics they developed a 

tracking C.L.F.. Through simulation they applied control strategies, which guaranteed 

accurate tracking of the U.A.V. (Ren & Beard, 2004). 

 

3.2.3.2 Autonomous UAV landing system design on a moving platform 

For his Ph.D. research Esmailifar (2009) developed an adaptive control system for the 

safe landing of a U.A.V.. Tracking a moving platform and recognising a landing area on 

it was controlled by a two-stage process. A supervisory stage recognised the landing pad 

and the tracking was controlled and error compensated by a State Dependent Ricatti 

Equation (S.D.R.E.). Computer simulation was once again used to verify the complete 

process and yielded satisfactory tracking performance during the landing phase 

(Esmailifar & Saghafi, 2009). 

 

3.2.3.3 Autonomous shipboard landing algorithm for UAVs 

Shin, You and Shim proposed an algorithm for autonomous U.A.V. shipboard 

landing. The algorithm comprised two section: the first part is a controller which is 

augmented by Time-Delay Control (T.D.C.) and the second is the guidance law. 

Unknown elements of the system model as a result of external disturbances and U.A.V. 

velocity changes are compensated for by T.D.C.. Crash avoidance and crosswind effects 

are handled by the guidance law. The team used real-time Matlab simulations to 

validate their algorithm. The results proved that the process exhibited more superior 
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tracking than a conventional P.D. controller. Repeated accurate landing was achieved 

(Shin, You, & Shim, 2013). 

 

3.2.3.4 Quaternion-based trajectory tracking control of UAVs using command filtered 

back stepping 

Representing U.A.V. orientation with quaternions, Zhao et al., developed a tracking 

system using “the command filtered back stepping technique” (Zhao, Dong, & Farrell, 2013, p. 

1018). Filtering the orientation through a second-order filter computed the angular 

velocity of the U.A.V. without the need to differentiate ensuring that the smallest 

angular path was always followed. Through simulation the team showed that the back 

stepping technique requires a smaller yaw rotation for trajectory tracking when vector-

based filtering was compared to quaternion-based filtering (Zhao, Dong, & Farrell, 

2013). 

 

3.2.3.5 UAV Heading Optimal Tracking Control using Online Kernel-Based HDP 

Algorithm 

Tan et al. (2014) proposed an alternative to neural network based U.A.V. control 

methods by implementing Kernel-Based Heuristic Dynamic Programming (K.H.D.P.) 

for optimal heading tracking. By modelling the U.A.V. flight dynamics and through a 

process of integrating kernel methods and Approximate Linear Dependency (A.L.D.) 

analysis the kernel methods produced superior generalisation results than M.L.P. neural 

networks (Tan, Liu, Guan, & Luo, 2014).  
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3.3 Conclusion 

The analysis of the technologies employed for vehicular control in the preceding 

sections demonstrates how important A.N.N.s are as a stand-alone control tool and as an 

element in systems which employ sensor technology. A.N.N.s have proven to be 

reliable and repeatedly accurate when trained using data specifically tailored to 

problems such as road-edge detection, proximity calculation, object avoidance, 

trajectory mapping and aircraft plant modelling. 

Similar approaches to the methodology used in this research have been found but 

none have implemented a methodology in the same phased manner incorporating 

machine vision, orientation calculation and landing zone attitude prediction.   

Although a trained A.N.N. is a reliable control tool recent research has also shown 

how deep neural networks (D.N.N.) can misclassify images when presented with data 

which has been mechanically altered especially in the case of image recognition (James, 

2014).  This is as a result of directly manipulating the data which, although 

imperceptible to humans, produces errors in the output of a trained A.N.N.. This is a 

useful exercise which demonstrates some limitations of A.N.N.s but it also shows that 

this data manipulation does not occur naturally and must be done intentionally in order 

to create false negative output values. A more recent study demonstrated D.N.N.s 

recognising, with high confidence, unrecognisable “fooling images” (Nguyen, Yosinski, & 

Clune, 2015, p. 14).   
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Chapter 4  Technical and Mathematical Background 
4.1 Introduction 

Several technical and mathematical constructs had to be employed throughout this 

research. The following sections discuss the main constructs briefly. 

Quaternions were employed instead of Euler angle to represent rotations. It was 

discovered early into this research that discontinuities around 00 for Euler angles made it 

impossible to train an A.N.N. to the required accuracy but once quaternions were used 

to measure rotation an A.N.N could be trained to a high degree of accuracy. 

Without access to a seagoing vessel from which data could be retrieved to form 

training datasets for the A.N.N.s it was decided to create simulations which would yield 

comparable datasets. Simulations of real-world sea and swell states were devised and 

interacted with a scale model of a naval vessel. Section 4.3 discusses the characteristics 

of sea motion. 

It was decided to pursue an orientation calculation method which required 

ascertaining the coordinates of the vertices of a typical landing pad “H”. To this end a 

corner recognition algorithm was employed. Section 4.4 explains the mathematics 

behind such an algorithm.  

4.2 Quaternions 

In 1843 the Irish mathematician Sir William Rowan Hamilton discovered quaternions 

(Hamilton, 1844). He had tried for years to find a three dimensional analogue to how 

complex numbers represent two dimensions so elegantly. By adding another term, 

complex numbers could be used to represent three dimensions but the multiplication of 

these two numbers together was not resulting in any meaningful geometrical 

interpretation. 

In classical complex number theory a 2D point or vector can be described in its polar 

form,= 𝑟𝑟𝑟𝑟𝑜𝑜𝑠𝑠Ɵ + 𝑟𝑟𝑠𝑠𝑖𝑖𝑎𝑎Ɵ𝑖𝑖, where 𝑟𝑟 is the length of the vector and Ɵ is the angle between 

the vector and the positive real axis. In general multiplying one polar expression of a 

vector by another gives,  
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𝑟𝑟1(cos𝛳𝛳 + 𝑠𝑠𝑖𝑖𝑎𝑎𝛳𝛳𝑖𝑖).𝑟𝑟2(cos 𝛼𝛼 + 𝑠𝑠𝑖𝑖𝑎𝑎𝛼𝛼𝑖𝑖)=𝑟𝑟1𝑟𝑟2(cos(Ɵ + α) + 𝑖𝑖(sin(Ɵ + α))) 

If we allow one of these to be a unit vector we could see it as a representation of a 

rotation, and multiplication clearly rotates the other vector by the appropriate angle.  

For example, taking the special case when 𝛳𝛳 = 900, multiplying any vector by the 

vector 𝑟𝑟𝑜𝑜𝑠𝑠900+𝑠𝑠𝑖𝑖𝑎𝑎900𝑖𝑖, which is simply i, has the effect of rotating the vector by 900 

counter clockwise as can be visualised on the left-hand illustration of Figure 19. 

The illustration on the right in Figure 19 attempts to illustrate the difficulties 

Hamilton faced, specifically the need for a solution for the product ij.

 

Figure 19  Visualisation of 2D and 3D rotation prior to Hamilton’s discovery of quaternions 
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The 3D space he was experimenting with had a real axis and two imaginary axes, i 

and j. Because i2=-1, when multiplying 2D vectors together, every time an i2 is 

encountered it can be replaced by -1. For example, 5+3i multiplied by i results in a 

vector 5i+3i2. Replacing i2 with -1 produces the result -3+5i, a new vector perpendicular 

to the original. Visualising 3D vectors requires using a third axis j. Multiplication of 3D 

vectors produces products containing ij combinations. So -3+5i multiplied by j results in 

a vector -3j+5ij. Hamilton had to find a way to replace the product ij so his eureka 

moment came when he realised that another axis k, a fourth dimension, was the 

solution. His famous formula for quaternion multiplication is given by 

 i2= j2 = k2 = ijk = -1.  If i2 = -1 then ii = -1 so i(jk) = -1. Figure 20 illustrates how the 

products of i,j and k are related. 

 
Figure 20  Relationships between i,j and k. 

Multiplying two 3D vectors results in sixteen elements, three squares containing i2,j2 

and k2 and six products containing ij, ik, ji, jk, ki and kj. The other seven elements 

contain one scalar square and six scalar products containing i, j and k. The squares of i, j 

and k can be replaced by -1 and any combination of i, j and k can be replaced by a 

single value of i, j or k. This results in a new 3D vector of the form 𝑤𝑤 + 𝑖𝑖𝑥𝑥 + 𝑗𝑗𝑦𝑦 + 𝑘𝑘𝑘𝑘 

where 𝑤𝑤 is a scalar and 𝑥𝑥, 𝑦𝑦 and 𝑘𝑘 are unit vectors along the axes i,j and k respectively 

(Hamilton, 1844, p. 5). Hamilton’s work paved the way for new solutions in problem 
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solving in mathematics and physics in three dimensions which were unachievable up to 

that point. 

A quaternion is generally expressed as follows 

𝑞𝑞 = 𝑤𝑤 + 𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑗𝑗 + 𝑘𝑘𝑘𝑘    𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑘𝑘 ∈  ℝ        (Eqn 8) 

 

But can also be expressed as a scalar and vector pair 

𝑞𝑞 = [𝑤𝑤, 𝑣𝑣]𝑤𝑤 ∈  ℝ,𝑣𝑣 ∈  ℝ3        (Eqn 9) 

The latter form can be used to illustrate how quaternions can be manipulated in a 

similar way to complex numbers. For example, the sum of two quaternions is simply the 

separate addition of the scalar part and the addition of the vector part.  

𝑞𝑞𝑏𝑏 + 𝑞𝑞𝑎𝑎 = [𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑏𝑏 , 𝑣𝑣𝑎𝑎 +  𝑣𝑣𝑏𝑏]  (Eqn 10) 

Subtraction only requires changing the signs in the above expression. Multiplying 

two quaternions together results in a combination of scalar products, a vector dot 

product and a vector cross product. So, 

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏 = [𝑤𝑤𝑎𝑎 , 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏 , 𝑣𝑣𝑏𝑏] = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑣𝑣𝑎𝑎.𝑣𝑣𝑏𝑏 , 𝑤𝑤𝑎𝑎𝑣𝑣𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑎𝑎 𝑥𝑥 𝑣𝑣𝑏𝑏]       (Eqn 11) 

A detailed treatment of Eqn 11 can be found in Appendix A. 

When Hamilton made his discovery in 1843 he could not have known how his 

formulae could be utilised in the future. With the advent of space travel in the 1960’s 

and computer graphics and gaming in the 70’s and 80’s a need arose to describe 

rotations in 3D by some method other than Euler angles, which suffer from gimbal lock. 

Gimbal lock can occur when two axes align, which can occur when certain calculations 

are made. Avoiding gimbal lock was critical to rocket telemetry systems (Hanson, 2006, 

p. 19). Quaternions do not suffer from gimbal lock so they began to be adopted as the 

main method to describe rotation in 3D and are now used in aviation (Phillips, 2004, p. 

867), space exploration (Markley & Crassidis, 2014, p. 46) and gaming graphics (Dunn 

& Parberry, 2012, p. 247). A rotation quaternion is described by the following equation.  

𝑞𝑞 = �𝑟𝑟𝑜𝑜𝑠𝑠 𝜃𝜃
2

, 𝑣𝑣 𝑠𝑠𝑖𝑖𝑎𝑎 𝜃𝜃
2
� (Eqn 12) 
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where 

𝜃𝜃
2
, half the angle of rotation  

𝑣𝑣, a unit vector with x,y and z elements (the axis of rotation) 

Only unit quaternions are used to describe rotations. Rotation of an object by a 

quaternion can be visualised as placing a unit sphere around the object with both the 

object and the sphere centred at the origin. The vector part of the quaternion forms an 

axis through the origin perpendicular to the vector of the point on the object to be 

rotated and the scalar part is the half-angle of rotation around this axis.  

The inverse of a quaternion is the conjugate divided by the square of the norm and the 

quaternion is a unit entity so the square of the norm equals one (Eqn 13). 

𝑞𝑞−1 = 𝑞𝑞∗

|𝑞𝑞|2
 (Eqn 13) 

and |𝑞𝑞|2 = 1  

so 𝑞𝑞−1 = 𝑞𝑞∗ 

 

The quaternion inverse equals the quaternion converse. Because of the nature of 

quaternions a vector is first rotated by the quaternion conjugate and then by the 

quaternion so a vector b is rotated to a new orientation b′ as described in Eqn 14. 

𝑏𝑏′ = 𝑞𝑞𝑏𝑏𝑞𝑞−1 (Eqn 14) 
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The rotation quaternion is described in half-angle terms precisely because of the 

action in Eqn 14. To preserve the length of the vector after rotation it is rotated twice, 

once by a unit quaternion for half a rotation and then with the same rotation angle by the 

quaternion inverse (conjugate) (Van Oosten, 2012). This is a well-known mathematical 

construct known as conjugation.  

The scalar product of two quaternions can be calculated just like 3D vector scalar 

products.  

                                       𝑞𝑞𝑎𝑎. 𝑞𝑞𝑏𝑏 = |𝑞𝑞𝑎𝑎||𝑞𝑞𝑏𝑏|𝑟𝑟𝑜𝑜𝑠𝑠 𝛳𝛳
2
               (Eqn 15)  

 

 

so the angle between two quaternions can be calculated as follows 

             𝑟𝑟𝑜𝑜𝑠𝑠−1 𝛳𝛳
2

= (𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 + 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 + 𝑘𝑘𝑎𝑎𝑘𝑘𝑏𝑏)/|𝑞𝑞𝑎𝑎||𝑞𝑞𝑏𝑏|        (Eqn 16)  

 

This relationship between pairs of quaternions has been used extensively in this 

research in Phase 2 to establish the accuracy of the trained A.N.N. and in Phase 3 to 

calculate the angle between the helipad orientation and the fixed flat surface normal 

from the ship. 

To achieve a rotation from one point to another a process known as Spherical Linear 

intERPolation (SLERP) is employed. Slerping rotates a point to another point through a 

great circle at a constant angular velocity on the surface of a 4D unit sphere. Figure 21 

below illustrates the path of a SLERP across the surface of the sphere. 
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Figure 21  SLERPing 

Source: Adapted from 

www.blackberry.com/developers/docs/6.0.0api/net/rim/device/api/math/Quaternion4f.html 

Using quaternions for rotation has several advantages over using Euler angles mainly 

because of the gimbal lock problem. They also require less computation as Euler angles 

must make use of rotation matrices which have nine elements requiring forty-five total 

arithmetic operations as opposed to twenty-eight for quaternions. Because quaternions 

can use SLERPing to interpolate between points the motion is smooth and at a fixed 

speed whereas matrix rotations using Euler angles can be jerky and non-linear (Dam, 

Koch, & Lillholm, 1998).  

4.3 Ship Motion   

A ship’s motion at sea is dictated by the wind, the current and by the state of the sea 

itself. Waves are formed at sea when energy from the wind is transferred to the surface 

of the ocean through friction. The water moves in localised regions of circular motion as 
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a result and the energy passes from one localised region to the next. Wave energy is 

transported through the water by this mechanism and can travel great distances (NOAA, 

2014). The water itself does not move longitudinally with the wave but it does move in 

a transverse motion perpendicular to the wave direction and any object floating on the 

surface is subjected to this transverse up and down motion. At its simplest this motion 

can be described by a sine wave but this is an over simplistic description. The simple 

wave relationship 𝑟𝑟 = 𝑖𝑖𝜆𝜆 applies to ocean waves. 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆 are the frequency and 

wavelength of the wave and 𝑟𝑟 is the speed of the wave or “celerity” (Nave, 2001). 

Celerity refers to the net velocity of a wave with respect to the stationary water it is 

passing through. The net velocity is inclusive of any current or any other disturbance 

which adds or detracts from the wave propagation. Although waves can be 

approximated by a sine wave, wave tank experiments have shown that ocean waves are 

approximated by a trochoid shape (Bascom, 1964). Trochoid and sine are similar wave 

shapes expect that as the wave amplitude increases the peaks of a trochoid wave tend to 

get narrower and steeper. Figure 22 below illustrates this phenomenon. It is not obvious 

in the figure that the peaks narrow and steepen because the wave amplitude has 

increased but this is what happens when the phenomenon occurs.  
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Figure 22  Trochoidal form of ocean waves 

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html#c1 

 

Ocean waves can be further classified into linear and nonlinear categories. From the 

regular wave theory there is a relationship between wavelength (𝜆𝜆), wave period (𝑇𝑇) 

and water depth (𝐻𝐻) given by: 

𝜆𝜆 = 𝑔𝑔
2𝛱𝛱
𝑇𝑇2𝑜𝑜𝑎𝑎𝑎𝑎ℎ 2𝛱𝛱

𝜆𝜆
𝐻𝐻           (𝐸𝐸𝑞𝑞𝑎𝑎 17) (Simmons, 1997) 

http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html#c1


60 
 

Simulations used in the design of oil rigs (Jonathon & Taylor, 1997), ocean going 

liners, oil tankers and other sea-going vessels include the parameters discussed above 

but for this research and as a proof of concept only regular sinusoidal wave motion was 

considered allowing the simulated ship to move with six D.o.F. as Figure 23 illustrates.

  

 

Figure 23  Co-ordinate frames 

Source: (Aranda, Armada, & Cruz, 2004, p. 151) 

 

4.4 Harris-Stephens Corner Algorithm 

Harris-Stephens’ corner algorithm was developed by Chris Harris and Mike Stephens. 

Edge detection filters had not been developed to handle corners and junctions (Canny, 

1983) so by developing their own corner detection algorithm they were able to detect 

corners in images. Extending earlier corner detection analysis carried out by Moravec 

(Moravec, 1980) they solved underlying issues and created a new corner detection 

algorithm. By incrementally moving a window over each pixel and calculating the pixel 

intensities between successive pixels they were able to calculate local maxima per pixel. 

Specifically, if a pixel had an 8-way intensity maximum then it was considered to be a 

corner (Harris & Stephens, 1988). The Harris-Stephens algorithm is presented in Eqn 18 

below. 

𝑅𝑅 = 𝑎𝑎𝑒𝑒𝑜𝑜(𝑀𝑀) − 𝑘𝑘 �𝑜𝑜𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒(𝑀𝑀)�
2
   (Eqn 18) 
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where 

𝑅𝑅 => 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑜𝑜ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑎𝑎 𝑖𝑖𝑠𝑠 𝑒𝑒𝑥𝑥𝑟𝑟𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 𝑜𝑜ℎ𝑒𝑒𝑎𝑎 𝑎𝑎 𝑜𝑜𝑖𝑖𝑥𝑥𝑒𝑒𝑜𝑜 𝑖𝑖𝑠𝑠 𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑎𝑎 𝑜𝑜𝑜𝑜 𝑏𝑏𝑒𝑒 𝑎𝑎 𝑟𝑟𝑜𝑜𝑟𝑟𝑎𝑎𝑒𝑒𝑟𝑟 

𝑀𝑀 = �𝑤𝑤(𝑥𝑥,𝑦𝑦) �
𝜆𝜆𝑥𝑥2 𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦
𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦 𝜆𝜆𝑦𝑦2

�
𝑥𝑥,𝑦𝑦

 

𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑎𝑎𝑜𝑜𝑒𝑒𝑎𝑎𝑠𝑠𝑖𝑖𝑜𝑜𝑦𝑦 𝑎𝑎𝑜𝑜 𝑜𝑜𝑜𝑜𝑖𝑖𝑎𝑎𝑜𝑜 𝑥𝑥 

𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝑣𝑣𝑖𝑖𝑒𝑒𝑤𝑤𝑖𝑖𝑎𝑎𝑤𝑤 𝑤𝑤𝑖𝑖𝑎𝑎𝑎𝑎𝑜𝑜𝑤𝑤 𝑎𝑎𝑜𝑜 𝑜𝑜𝑜𝑜𝑖𝑖𝑎𝑎𝑜𝑜 𝑥𝑥,𝑦𝑦 
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Chapter 5  Phase 1 Image Processing 
5.1 Introduction 

The orientation of any object relative to the observer can be calculated if there are 

visible points of reference which have a known configuration. This has been 

demonstrated in an investigation of Hough transforms and plane orientations from skew 

symmetry by Palmer, Petrou and Kittler (Palmer, Petrou, & Kittler, 1993). The 

objective of Phase 1 is to identify these points of reference, so that the orientation may 

be calculated.  

U.A.V.s generally have an on-board camera and a camera is easy to retro-fit if the 

U.A.V. doesn’t already have one. Camera orientation can be adjusted or set at a fixed 

viewing angle. In this case it is optimal to point the camera facing directly downward. It 

is assumed that there will be a video feed available from which frames will be extracted. 

It is from these images that the points of reference will be extracted. The British Civil 

Aviation Authority (CAA, 2013) specifies the dimensions for offshore helicopter 

landing areas. The “H” sign of a helipad is standardised and this is internationally 

recognised so it is natural to use this in choosing the points of reference. Existing or 

custom written corner recognition algorithms can be used to calculate the coordinates of 

each vertex. These algorithms may be applied to an image of the helipad. The resulting 

coordinates will be normalised to match the frame size used to train the neural network 

in Phase 2. 

5.2 Methodology 

Unity was employed throughout this project to simulate ship and helipad motion so it 

was logical to employ it to produce video of the ship in motion relative to the U.A.V.. 

Video of the moving ship and helipad was used to capture a sequence of still images. 

These in turn were fed into a greyscale filter and each image was imported into Matlab 

where the Harris corner recognition function was applied to them. The algorithm finds 

corner points and this was used to identify the vertices of the “H”. This exercise was 

used as a visual test to recognise the vertices. For numerical comparison, at the point 

when each image was saved, the actual orientation of the ship was recorded using 

Unity’s WorldToScreenPoint() function. This function converts an objects world 
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position into its screen position. The output of the function is a pixel pair of x and y co-

ordinates so targets within the viewing window are represented as x and y co-ordinate 

pairs.. Unity’s screen-space defines its origin (0,0) at the bottom-left of the screen. 

To ensure the same sequence of vertices as Unity produces was recorded by Matlab 

some basic mathematics was applied to the output. Using the formula for the equation 

of a line calculated from two coordinates every vertex’s proximity to the line was 

calculated and the vertices were sorted into the correct order. Matlab’s corner points are 

represented as x and y coordinate pairs just as Unity represents them. The only 

difference between both packages is that the y coordinates are inverted relative to each 

other. The data was pre-processed to account for this so that both origins are perceived 

to have the same screen position. 

The output from both packages was a set of 24 normalised data points per image. 

These were compared directly with each other. Visual inspection alone indicates a very 

close match. Numeric comparisons also indicate a very close match. The results are 

discussed in section 5.3. 

5.3 Results & Conclusions 

Ten random orientations of the ship were compared using Matlab and Unity. Two of 

the sets of orientations are displayed in Figure 24 with Matlab’s corner recognition 

output on the left and images saved directly from Unity on the right. The green points 

on the images on the left indicate the Harris corner recognition results. The average 

percentage difference between Matlab’s and Unity’s vertex coordinate calculation is +/-

0.3%. 

High definition images weren’t suitable candidates for corner recognition as the 

algorithm found corners even in straight lines where the lines were jagged. Managing 

the different thresholds in the algorithm and reducing the number of required corners 

helped to improve the relevant corner acquisition. It also proved more advantageous to 

degrade image quality and add some noise so that jagged artefacts were smoothed out 

and only true corners were detected. Finally, reducing the contrast between the deck and 

the sea improved corner recognition. 
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The results from Phase 1 prove that the coordinates of the twelve vertices of a helipad 

“H” can be calculated accurately by feeding a grey-scaled 2D frame of live video 

through a corner recognition algorithm. 

 

 

 

Figure 24  Matlab vs Unity “H” vertices calculation 
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Chapter 6  Phase 2 Orientation and Distance   
6.1 Introduction 

The purpose of Phase 2 is to train a neural network to calculate the orientation of a 

ship and the U.A.V.’s distance to the deck using specific points of reference captured 

from frames of live feed which will be provided by Phase 1. The trained A.N.N. 

determines the orientation and proximity of a helipad relative to the U.A.V.. 

The training input dataset comprises samples of 12 normalised co-ordinates of points 

on the landing pad. The training output dataset comprises orientation, expressed as 

quaternions, and proximity expressed in Unity units. Unity’s default scale is set at one 

unit to one metre in real-world terms (Unity, 2015). Unity is a 3D game development 

package which utilises a physics engine to simulate real-world gravity controlled 

interactions between different materials. The software is particularly useful for 

production of a training dataset as the global orientation of an object can be recorded as 

it moves in a manner similar to how it would move in the real world. Several other 

parameters such as proximity and real world co-ordinates can also be recorded over 

millisecond time intervals. The fully functional system will use the output from Phase 1 

as input for this phase but for the purposes of this research the training dataset was 

created through simulation of a ship’s motion at sea using Unity. Ship’s motion can be 

expressed using rotational movements around the z, x and y axes termed pitch, roll and 

yaw and translational movements left or right, forward or backward, up or down and 

these are termed sway, surge and heave. Figure 25 illustrates the six elements of ship 

motion.  

 
Figure 25  Ship motion at sea 



66 
 

6.2 Methodology 

6.2.1 Basis of Methodology 

The methodology which was eventually employed in this phase was the result of 

several experimental evolutions. This was carried out in order to find the optimum 

configuration of simulation elements to produce the appropriate final dataset for training 

of the A.N.N.. The following two sections outline how the experimentation evolved 

until a final optimised set of methods was discovered. 

6.2.2 Evolution of Methodology 

Preliminary experiments were completed to test the effectiveness of the Harris corner 

detection algorithm. A cube was created in Unity approximately 3 x 3 x 0.1 units in size 

and a “H”, like those used on a helipad, was placed on the top face. Unity’s built in 

functionality calculates the x and y coordinates of specific points in a viewing window 

relative to the world space for that object. The cube’s rotation was set manually and an 

image of each orientation was saved. These images were imported into Matlab and the 

Harris Corner function was applied to each one. The x and y co-ordinates of the vertices 

of the “H” were recorded. Figure 26 illustrates the Matlab corner recognition results. 

 

Figure 26  Matlab Corner Recognition 
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Nineteen images covering a range of orientations were used. A dataset of the co-

ordinates along with the associated Euler angle representation of orientation was 

compiled. The dataset was split into a 70:15:15 ratio and used to train a feed-forward 

neural network. Input comprised the co-ordinates of the 12 vertices and output 

comprised the orientation of the helipad expressed as Euler angles. Matlab’s fitting tool 

was used for training. The trained A.N.N. proved highly inaccurate yielding an accuracy 

of +/- 540 (Appendix A, Table 3).  

Such a poor result merited further investigation. Issues arose when using Euler 

angles. Training proved to be inaccurate because of the natural discontinuity that exists 

when moving from 10 back to 3590 and further. This discontinuity proved problematic as 

the trained neural network was not capable of discerning this small angular change so it 

was decided to use unit quaternions instead to express the orientation. Quaternions have 

been used for the control of rockets and satellites since the 1970’s (Wertz, 1978, p. 511) 

and in computer graphics, to control rotation, since the 1980’s (Shoemake, 1985, p. 

247). They do not suffer from the effect of gimble lock and there are no transition issues 

crossing over the 00/3600 boundary. Unit quaternions are used to describe rotations in 

three dimensions. As quaternions have four unique values this dictated how the A.N.N. 

was structured. Twenty-four inputs represent the coordinates of the “H” vertices and 

four outputs represent the orientation in quaternion format. 

A new training dataset was created using quaternions to express orientation. The cube 

(helipad) was again allowed to randomly rotate between +/- 300 along three axes and the 

co-ordinates of each vertex along with the associated orientation were saved to a file. 

The A.N.N. training proved more accurate with M.S.E. dropping from 58 down to 2.8 x 

10-3 using quaternions instead of Euler angles. Figure 27 shows the high regression 

value of the trained A.N.N., using quaternions instead of Euler angles. 
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Figure 27  Quaternion and distance regression plots for training 

 

 

 

 

 

Figure 28 shows the A.N.N. training regression plot for thirty thousand samples. This 

training dataset comprised target output for orientation only. Training proved more 

accurate when two A.N.N.s were trained separately, one for orientation and the other for 
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distance. The dataset was produced by randomly rotating the cube +/-300 in x, y and z 

axes. M.S.E. reduced to 4.33 x 10-4 with an overall linear regression of 0.999.    

 

Figure 28  A.N.N. training using quaternions for rotation 

The A.N.N.’s average angular difference was 6.40 (Appendix A, Table 4 ). Although 

quite accurate when trained, testing the above A.N.N. using data gathered from the ship 

simulation showed it to be completely inaccurate and the A.N.N. was not able to 

generalise. Errors of 1000 were observed. An error of this magnitude can be a result of 

over-fitting. The trained A.N.N. learns to only recognise data from the training set and 

so cannot handle unseen data. It also occurs when a training dataset is not wide-ranging 

enough to allow the A.N.N. to generalise. In this case the training dataset was created 

by rotating a cube around a fixed origin whereas the test dataset was produced by 

rotating a ship, with the cube placed on the deck near the stern, around a completely 
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different axis of rotation. The training helipad performed rotations which were 

incomparable to the testing helipad’s rotations. 

6.2.3 Final Methodology 

It was decided to try and simulate the cube’s motion by embedding it on a model 

ship. Blender, a 3D graphics and animation package, was used to create a scale model of 

a navy frigate. This was imported into Unity. The training cube was embedded on the 

aft deck of the ship so only the top face was visible. The model was rotated sinusoidally 

with six degrees of freedom (pitch, roll, yaw, sway, surge and heave) using C# code. 

The amplitude and frequency of these rotational movements as well as the three 

translational movements could be varied to simulate real-world sea states. The 

previously trained A.N.N. was tested using data produced by randomly rotating the ship. 

Although trained to a high accuracy with overall regression of 0.9986 and an M.S.E. of 

4.33 x 10-4 when tested using unseen data the angular error was 1000. A new training 

dataset was created from the ship’s motion with the original helipad now part of the 

ship’s structure on the aft deck. A wide set of translation and rotation motions were 

required to produce a broad range of training values. The coordinates of the “H” 

vertices and the orientation expressed as quaternions were recorded. The distance 

between the U.A.V. and the helipad was also recorded. The dataset was preprocessed in 

Excel and comprised 8040 samples with 24 normalised inputs and 4 outputs. It was 

divided into a 70%:15%:15% ratio. 70% for training, 15% for validation and 15% for 

testing during training. The L.M. backpropagation algorithm was used to train the 

A.N.N.. Once trained the A.N.N. was tested using random ship motion unseen by the 

network. Training and testing proved more accurate than in previous experiments. 

Figures 29 and 30 illustrate the training results.  
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Figure 29  Training regression plots, A.N.N. trained using ship data 

 

Several A.N.N.s were trained and it was observed that training proved more 

successful when the target output was separated into orientation and distance. This will 

be explained in the results section below.  
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Figure 30  M.S.E. forA.N.N. trained using ship data 

 

6.3 Results 

The results of testing the trained A.N.N. discussed in section 6.2.2 are presented 

below. The A.N.N. was tested using unseen ship motion data. Figures 31 and 32 

illustrate the test results. 
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Figure 31  Regression plot for test data, A.N.N. trained using ship data 

 

With an overall regression of 0.99903 the tested A.N.N. demonstrated almost perfect 

correlation between target and actual output. 
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Figure 32  Error Histogram, A.N.N. trained using ship data 

 

As can be seen from the training and testing plots above, the trained A.N.N. proved 

very accurate. The network has an average angular error of 3.60.  

 

6.4 Conclusions 

Using quaternions instead of Euler angle for rotation improved A.N.N. training 

resulting in a higher correlation between the expected and actual orientation. 

Quaternions do not suffer from gimbal lock and more importantly for this research, they 

do not exhibit the same non-linearity around 00 as Euler angles do. The transition from 

00 to 3590 for Euler angles proved difficult to map for the A.N.N.. Quaternions rotate an 
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object from one orientation to another by conjugation of a vector. This means that 

vector magnitude is maintained and a smooth SLERP is performed between the start 

and end points of the rotation. Quaternions comprise an axis and an angle of rotation 

which allows for a smooth, linear rotation regardless of the orientation of the object 

being rotated. Therefore, quaternions avoid gimbal lock and there will never be any 

issues with non-linearities at boundaries. As a result of this the A.N.N. can more easily 

find patterns in the training data and in this case the A.N.N. can make a well-defined fit 

between input and output.  

Separating the training data into two unique datasets, one for rotation and one for 

proximity yielded more accurate results; 30 versus 70 for rotation accuracy. Proximity 

accuracy did not show any improvement from the original high accuracy of +/- 2%. 

Initially the A.N.N. was trained using a cube in isolation but it was found that when the 

A.N.N. was tested using the motion of the ship, with the cube embedded in the ship’s 

deck, it was completely inaccurate and the A.N.N. was unable to generalize and began 

to over-fit on the training dataset. The A.N.N. trained using the ship’s simulated motion 

proved more realistic and reliable. The training set target versus actual output yielded an 

average accuracy of +/- 2.150 (see results_quat_dist.xlsx/ship training 1802). Testing the 

A.N.N. with unseen data proved accurate to an average error of +/- 3.60, this could be 

improved upon by creating a training dataset with a broader range of motion. This 

A.N.N. is trained and ready to be deployed. The output will be used as input for Phase 

3. Based on these results it is possible to conclude that the trained A.N.N. satisfies all of 

the requirements set out in section 6.1. Having trained an A.N.N. to calculate a ship’s 

orientation it is clear that the process works to the required accuracy. 
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Chapter 7  Phase 3 Landing Prediction 
7.1 Introduction 

The goal for phase 3 is to predict a stream of safe landing intervals for the U.A.V. 

using a trained A.N.N.. Prediction will involve calculating the helipad’s orientation over 

a time interval and then calculating when it will be level enough to land on. When 

attempting to land, the U.A.V. will require orientation data acquired in Phase 2. This 

data will be fed into the trained A.N.N. and a landing window some set time into the 

future will be output. Given knowledge of movement up to a given time, future 

movement should be predictable in the short term. To allow for a sufficient amount of 

data to be gathered in a short time-burst it was decided to create samples of data 500ms 

in length captured in 100ms intervals. An arbitrary five seconds was chosen for the 

landing manoeuvre to go from hovering to landing on the deck so at least fifty samples 

were required. The target output was a Boolean value calculated by checking if the 

angular difference between a normal from a level deck and the actual rotation of the 

deck was below a certain threshold five seconds later. This threshold was chosen from 

specifications for rotary helicopters and was set at 100. Figure 33 illustrates the angle 

between the deck (green arrow) and the normal up vector (pink arrow). In this case the 

normal is the expected normal (straight up) to the surface when the surface is perfectly 

flat. 

 

Figure 33  Angle between normal vector and ship 

Although time-based the A.N.N. will be configured to recognise patterns and so a 

feed-forward M.L.P will be used. The A.N.N. will have twenty inputs, fifteen hidden 
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neurons with tan sigmoid transfer function in the hidden layer, one output and a tan 

sigmoid transfer function in the output layer. The backpropagation algorithm will be 

scaled conjugate gradient. The aim is to classify input data as a true or false sample so a 

classic time-series recurrent neural network will not be required. 

7.2 Methodology 

Using the setup in Unity from Phase 2 the ship model was set to simulate differing 

sea states. The rotation expressed as a quaternion was written to a file every 100ms. The 

associated angular difference between the orientation of the ship and a global upward 

pointing vector was calculated and recorded every 100ms also. The dataset was 

processed using Excel. The first data entry was from an arbitrary time in the past and 

the succeeding four 100ms data points were prepended to this and saved. Samples of 

500ms were created at 100ms intervals. The time between each sample was 100ms also. 

The threshold for maximum angular difference was set at 100. This was used to 

determine the target output, which determined whether the current orientation was 

within an acceptable threshold for landing or not. This was recorded as a one for true 

and zero for false. Each input was matched with the output from five seconds in 

advance. A sample of the dataset can be seen in Figure 34 below. 

 

Figure 34  Sample training dataset for Phase 3 
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  Intervals of half a second proved sufficiently long enough to provide enough 

information to the A.N.N. to train it. For this training section only the orientation was 

required. In order to successfully predict landing intervals from arbitrary heights above 

the helipad an algorithm will have to be developed to determine the U.A.V.’s proximity 

to the deck and to choose a separately trained A.N.N. for each proximity step. Initially 

the A.N.N. was trained on the basis of a five second requirement for landing but as the 

U.A.V. approaches the deck the landing time will decrease. Several A.N.N.s can be 

trained for this purpose depending on the degree of accuracy required. The A.N.N. was 

trained with 4400 samples using Matlab’s pattern tool for a five second landing 

manoeuvre.   

7.3 Results 

Figure 35 illustrates the confusion matrix for the trained A.N.N.. Having determined 

that the optimal number of neurons in the hidden layer was fifteen an overall accuracy 

of 97.3% was the best training result. A separate network was also trained for a one 

second landing manoeuvre (Figure 37 and 38).  
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Figure 35  Confusion Matrix for Phase 3 training 5 second landing time 

Once trained the A.N.N. was tested using another unseen dataset. Figure 36 

demonstrates the trained A.N.N.’s accuracy. 
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Figure 36  Confusion Matrix for tested Phase 3 A.N.N. 5 second landing 

The critical value in these results is the 0.6% of times when the U.A.V. would attempt 

a landing when it shouldn’t. This error will not be an issue because the results will be 

averaged over time. Through a process of data filtering and average weighting, single 

anomalies like the one seen in the confusion matrix will be extrapolated out of the 

prediction data and ignored. This could add a lag of up to 500ms but to counteract this 

the sample rate could be increased until the lag is reduced to a much smaller amount. 
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The A.N.N. training results for a one second landing window were as follows. 

Overall a training success rate of 98.4% was achieved. When tested the A.N.N. 

achieved a 98.5% success rate. As with the five second landing A.N.N. this A.N.N. 

output will also be filtered and weighted to remove any anomalies. 

 

 
Figure 37  Confusion matrix Phase 3 training 1 second landing 



82 
 

A useful analysis tool for binary decision systems is the receiver operating 

characteristic (R.O.C.) curve. It is a measure of the true positive rate (sensitivity) as a 

function of the false positive rate (fall-out). The curve indicates how well a system 

performs (ref here). In the case of predictive land or no-land scenarios the numerical 

comparison of both outcomes can provide an insight into the efficiency of the trained 

A.N.N.. 

 

Figure 38  Confusion Matrix for Phase 3 1 second landing test 
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7.4 Conclusions 

When used in conjunction with the trained A.N.N. from Phase 2 it can be shown 

through simulation that the A.N.N. trained in Phase 3 is able to determine when a 

U.A.V. should or should not land.  
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Chapter 8  Implementation of Phases 1, 2 and 3 
8.1 Introduction 

Chapter 8 details a real-time sequential investigation of the implementation of phases 

1, 2 and 3. The combination of the three phases required the recording of images of the 

moving helipad captured every 100ms and fed into Matlab. The output from this phase 

had to be fed into the phase 2 A.N.N. in order to calculate the orientation of the helipad. 

Finally, a 500ms sample of these orientations had to be used as input to the phase 3 

A.N.N. to indicate whether or not it would be safe to land in five seconds time. 

8.2 Results of Phase 1, 2 and 3 combined 

Five images were saved, at 100ms intervals, from live video of a moving ship. The 

images were fed into Matlab and the screen coordinates for each vertex of the “H” were 

saved to a file. This sorted, normalised data was fed into the A.N.N. from phase 2 and 

the output was used as input for the A.N.N. from phase 3. The images are shown below 

in Figure 39 and the results are displayed in tables 1and 2. 
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t+500 ms t+400 ms 

  

t+300 ms t+200 ms 

  

t+100 ms  

 

 

 

Figure 39  Video capture at 100ms intervals 
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Time helipad orientation  Phase 2 output  

ms x y z w  x y z w Angle 

t+500  0.130 0.0092 0.0337 0.991  0.141 0.0138 0.0763 0.9787 2.5970 

t+400  0.140 0.0088 0.0334 0.990  0.161 0.0130 0.0667 0.9791 2.3664 

t+300  0.141 0.0083 0.0320 0.989  0.144 0.0114 0.0811 0.9815 2.8596 

t+200  0.134 0.0078 0.0293 0.990  0.165 0.0169 0.0603 0.9779 2.6120 

t+100  0.120 0.0072 0.0256 0.992  0.112 0.0140 0.0520 0.9875 1.6404 
 

Table 1  Helipad orientation vs orientation calculated by A.N.N. 

The output from the A.N.N. was combined to create a 500ms sample. This consisted 

of twenty elements and was used as input for the Phase 3 A.N.N. for a five second 

landing. This A.N.N. outputs one value either zero or one, which translates into a no-

land or land manoeuvre. In this case a safe landing was calculated. The same data was 

fed into an A.N.N. trained for a one second landing. In this case, with an input described 

in Table 2 both A.N.Ns. predicted that the platform would be within the threshold for 

landing both five seconds and one second hence. 

 x y z w 

t+500ms 0.141 0.0138 0.0763 0.9787 

t+400ms 0.161 0.0130 0.0667 0.9791 

t+300ms 0.144 0.0114 0.0811 0.9815 

t+200ms 0.165 0.0169 0.0603 0.9779 

t+100ms 0.112 0.0140 0.0520 0.9875 
 

Table 2  Temporal input for phase 3 A.N.N. 
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8.2 Conclusion 

This experiment illustrated above, used five sequential images of the helipad, 

calculated the orientation of the helipad at each instance and calculated if it would be 

safe to land five seconds and one second into the future. In this case the network 

correctly predicted that it would be safe to land both times. The deck was level enough 

that if this orientation was presented to the U.A.V. at the correct proximity then it would 

be safe to land in one second or five seconds into the future. If this had been a real life 

scenario then the U.A.V. would have attempted to land and wait for instructions at one 

second intervals.    

Before deploying this system the A.N.N. for Phase 3 would have to be trained with a 

broader range of data possibly using all nine wind sea-states and ten swell states.   
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Chapter 9  Conclusions and Recommendations 
9.1 Conclusions, Recommendations and Further Work 

For use in a real-world application the trained A.N.N.s could be deployed as a 

standalone application in a .jar or .exe file and embedded into a device such as an 

Edison board. The system could be integrated with an existing system and act as an 

audible or visual landing aid to assist, for example, a manned aircraft pilot to choose an 

optimum landing window. In the U.A.V. realm the system could be deployed as an aid 

to an existing autonomous landing system but with some more development it could be 

transformed into a stand-alone autonomous landing control system. While this thesis 

shows the feasibility of producing such an application, there would be a significant 

amount of further research required before a working product could be developed.   

Phase 1 

The results achieved in Phase 1 prove that the methodology employed to find vertices 

of a “H” from an image works well. The co-ordinates of each vertex were accurate to 

within an average of +/- 0.3%. This of course was achieved using computer generated 

images which are ideal for the process.  

 Future work for this phase would require acquiring real images of a landing pad 

during different sea states. Images of landing pads without a specific symbol should also 

be acquired to check and see if it can be identified using the same methodology. There 

will also be a requirement for error correction to account for incomplete landing pad 

features and situations like water or dirt on the camera lens. Error correction can be 

included by using known methods for pose estimation such as homography (Criminisi, 

Reid, & Zisserman, 1997), photoclinometry (Portigliotti, Dumontel, Capuano, & 

Lorenzoni, ND) and weak perspective and paraperspective projections (Dornaika & 

Garcia, 1999). 

Phase 2 

The findings from Phase 2 show that given enough data an A.N.N. can be trained to 

calculate orientation from a set of feature co-ordinates reasonably well. On average the 

trained A.N.N. is accurate to +/- 3.60.   
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Future work for Phase 2 would include using less features on the landing pad to find a 

threshold of required points. Using real-world data of ship motion using several ships 

and as many sea states as possible would also lead to a better trained A.N.N. and should 

improve the overall accuracy.  

Phase 3 

The results from training an A.N.N. in Phase 3 prove that given a set of orientations it 

can be trained to predict future landing windows quickly and to quite a reasonable 

degree of accuracy. During training the A.N.N. misclassified a land / no-land situation 

1.2% of all the scenarios presented to it. 

Future research on this phase should include a wide ranging real-world training 

dataset. This would improve the classification accuracy. A system of filtering the 

A.N.N. output so that any anomalies are ignored should also be included in this phase.  
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Appendix A 
Detailed treatment of  Eqn 11: 

* ( 𝑖𝑖𝑗𝑗 = 𝑘𝑘, 𝑗𝑗𝑘𝑘 = 𝑖𝑖,𝑘𝑘𝑖𝑖 = 𝑗𝑗, 𝑗𝑗𝑖𝑖 = −𝑘𝑘,𝑘𝑘𝑗𝑗 = −𝑖𝑖, 𝑖𝑖𝑘𝑘 = −𝑗𝑗, 𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = 𝑖𝑖𝑗𝑗𝑘𝑘 = −1) 

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏 = [𝑤𝑤𝑎𝑎, 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏, 𝑣𝑣𝑏𝑏] = (𝑤𝑤𝑎𝑎 + 𝑥𝑥𝑎𝑎𝑖𝑖 + 𝑦𝑦𝑎𝑎𝑗𝑗 + 𝑘𝑘𝑎𝑎𝑘𝑘)(𝑤𝑤𝑏𝑏 + 𝑥𝑥𝑏𝑏𝑖𝑖 + 𝑦𝑦𝑏𝑏𝑗𝑗 + 𝑘𝑘𝑏𝑏𝑘𝑘) 

 = (𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑘𝑘𝑎𝑎𝑘𝑘𝑏𝑏) 

          +(𝑤𝑤𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑥𝑥𝑎𝑎 + 𝑦𝑦𝑎𝑎𝑘𝑘𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑘𝑘𝑎𝑎)𝒊𝒊 

          +(𝑤𝑤𝑎𝑎𝑦𝑦𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑦𝑦𝑎𝑎 + 𝑘𝑘𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑘𝑘𝑏𝑏𝑥𝑥𝑎𝑎)𝒋𝒋 

            +(𝑤𝑤𝑎𝑎𝑘𝑘𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑘𝑘𝑎𝑎 + 𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌 

                          = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑘𝑘𝑎𝑎𝑘𝑘𝑏𝑏 ,  

𝑤𝑤𝑎𝑎(𝑥𝑥𝑏𝑏𝒊𝒊 + 𝑦𝑦𝑏𝑏𝒋𝒋 + 𝑘𝑘𝑏𝑏𝒌𝒌) + 𝑤𝑤𝑏𝑏(𝑥𝑥𝑎𝑎𝒊𝒊 + 𝑦𝑦𝑎𝑎𝒋𝒋 + 𝑘𝑘𝑎𝑎𝒌𝒌) 

                                +(𝑦𝑦𝑎𝑎𝑘𝑘𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑘𝑘𝑎𝑎)𝒊𝒊 + (𝑘𝑘𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑘𝑘𝑎𝑎)𝒋𝒋 + (𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑥𝑥𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌] 

The following can be substituted into the previous equation 

𝑣𝑣𝑎𝑎 = 𝑥𝑥𝑎𝑎𝒊𝒊 + 𝑦𝑦𝑎𝑎𝒋𝒋 + 𝑘𝑘𝑎𝑎𝒌𝒌 vector a 

𝑣𝑣𝑏𝑏 = 𝑥𝑥𝑏𝑏𝒊𝒊 + 𝑦𝑦𝑏𝑏𝒋𝒋 + 𝑘𝑘𝑏𝑏𝒌𝒌 vector b 

𝑣𝑣𝑎𝑎. 𝑣𝑣𝑏𝑏 = 𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏𝒊𝒊𝟐𝟐 + 𝑦𝑦𝑎𝑎𝑦𝑦𝑏𝑏𝒋𝒋𝟐𝟐 + 𝑘𝑘𝑎𝑎𝑘𝑘𝑏𝑏𝒌𝒌𝟐𝟐     dot product 

𝑣𝑣𝑎𝑎𝑥𝑥𝑣𝑣𝑏𝑏 = (𝑦𝑦𝑎𝑎𝑘𝑘𝑏𝑏 − 𝑦𝑦𝑏𝑏𝑘𝑘𝑎𝑎)𝒊𝒊 + (𝑘𝑘𝑎𝑎𝑥𝑥𝑏𝑏 − 𝑘𝑘𝑏𝑏𝑥𝑥𝑎𝑎)𝒋𝒋 + (𝑥𝑥𝑎𝑎𝑦𝑦𝑏𝑏 − 𝑥𝑥𝑏𝑏𝑦𝑦𝑎𝑎)𝒌𝒌    cross product 

therefore 

[𝑤𝑤𝑎𝑎, 𝑣𝑣𝑎𝑎][𝑤𝑤𝑏𝑏, 𝑣𝑣𝑏𝑏] = [𝑤𝑤𝑎𝑎𝑤𝑤𝑏𝑏 − 𝑣𝑣𝑎𝑎 . 𝑣𝑣𝑏𝑏 ,𝑤𝑤𝑎𝑎𝑣𝑣𝑏𝑏 + 𝑤𝑤𝑏𝑏𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑎𝑎𝑥𝑥𝑣𝑣𝑏𝑏] 
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Tables of  Results 

Image H1 H2 H3 H4 

Target 
x: 200 
y: 3030 
z: 3080 

 

x: 460 
y: 3390 
z: 20 

 

x: 490 
y: 510 
z: 260 

 

x: 490 
y: 510 
z: 340 

 

Actual 
x: 346.670 
y: 352.140 
z:349.680 

 

x: 351.820 
y: 360.690 
z:358.210 

 

x: 11.660 
y: 15.510 
z:12.990 

 

x: 9.080 
y: 13.210 
z:10.750 

 

Delta 
x: 340 
y: 490 
z: 420 

 

x: 540 
y: 210 
z: 40 

 

x: 370 
y: 350 
z: 130 

 

x: 400 
y: 380 
z: 230 

 

 

Table 3  Results for first A.N.N. in Phase 2, Euler angles for orientation 

 

Target output 

 

Actual output Angle 
(deg) x y z w x y z w 

-0.09 0.16 -0.23 0.96 -0.11 0.16 -0.21 0.95 2.98 

0.10 -0.07 -0.19 0.98 0.05 -0.07 -0.17 0.97 4.7 
 

-0.00 -0.05 -0.04 1.00 -0.03 -0.04 0.01 0.99 13.1 
 

-0.06 -0.12 0.04 1.00 -0.09 -0.12 -0.00 0.98 8.00 
 

0.10 -0.10 0.15 0.98 0.08 -0.10 0.17 0.96 4.62 
 

-0.15 0.21 -0.17 0.95 -0.15 0.22 -0.15 0.95 5.2 
 

-0.11 0.25 0.15 0.95 -0.11 0.24 0.18 0.94 6.98 
 

-0.25 0.07 0.15 0.95 -0.23 0.07 0.16 0.96 2.96 
 

0.25 0.11 0.13 0.95 0.24 0.12 0.11 0.97 4.8 
 

0.16 -0.19 0.24 0.94 0.13 -0.18 0.20 0.94 10.24 

 

Table 4  A.N.N. test results using quaternions, phase 2 testing actual vs expected rotation 
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Target output  Actual output Angle 
(deg) x y z w x y z w 

0.19 -0.02 0.05 0.98 0.22 -0.02 0.04 0.98 1.5 
0.20 -0.02 0.05 0.98 0.20 -0.03 0.05 0.98 1.4 
0.20 -0.02 0.05 0.98 0.20 -0.03 0.05 0.98 1.02 
0.21 -0.03 0.06 0.97 0.21 -0.03 0.07 0.97 1.52 
0.22 -0.03 0.07 0.97 0.22 -0.03 0.08 0.97 2.52 
0.17 0.05 -0.12 0.98 0.15 0.04 -0.11 0.98 2.38 
0.14 0.04 -0.12 0.98 0.17 0.04 -0.09 0.97 7.48 
0.13 0.04 -0.12 0.98 0.13 0.05 -0.10 0.98 4.48 
0.10 0.04 -0.12 0.99 0.10 0.04 -0.11 0.98 4.3 
0.10 0.04 -0.12 0.99 0.13 0.03 -0.10 0.98 5.26 

 

Table 5  A.N.N. test results for Phase 2 using quaternions for orientation and ship data for 

training and testing 
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Statenumber Height(m) Description Swell 

number 

Description 

0 No wave Calm (Glassy) 0 No swell 

1 0 - 0.10 Calm (Rippled) 1 Very low (short & low wave) 

2 0.10 - 0.50 Smooth 2 Low (long & low wave) 

3 0.50 - 1.25 Slight 3 Light (short & moderate wave) 

4 1.25 - 2.50 Moderate 4 Moderate (moderate wave) 

5 2.50 - 4.00 Rough 5 Moderate (long & moderate 

wave) 

6 4.00 - 6.00 Very rough 6 Rough short & heave wave 

7 6.00 - 9.00 High 7 High (average & heavy wave) 

8 9.00 - 14.00 Very high 8 Very high (long & heavy wave) 

9 14.00+ Phenomenal 9 Confused (wave length & height 

indefinable) 

 

Table 6 Douglas Sea state scale and swell scale 
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Appendix B 
 

Contents of DVD 

The attached DVD contains the following: 

Excel file containing results of all experiments for all phases.  

     results_quat_dist.xlsx 

          results_1411_quat_dist.xlsx 

Raw training and testing data CSV files.  

     cornersForm_ship_1802.csv 

     shipPattern_1203.csv 

Code for corner recognition 

C# code for ship simulation including orientation calculation, vertices coordinate 

tracking, export to file and deviation of landing pad from normal. 

Soft copy of thesis  

 

 

 

  

 


	Neural Networks for Autonomous Control of Unmanned Helicopters
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1  Introduction
	1.1 Project Motivation
	1.2 Aims of Project
	1.3 Thesis Structure

	Chapter 2  Artificial Neural Networks
	2.1 Introduction
	2.2 Biological Neural Networks
	2.3 History of A.N.N.s
	2.3.1 McCullogh-Pitts Neuron
	2.3.2 Perceptron
	2.3.3 Multi-Layered Perceptron
	2.3.4 Adaline / Madaline
	2.3.5 Minsky & Pappert
	2.3.6 Modern Developments

	2.4 ANN Architecture / Backpropagation
	2.4.1 Introduction
	2.4.2 Summation Function
	2.4.3 Activation and Output
	2.4.4 Feed forward and Feedback Neural Networks

	2.5 ANN Training Algorithms and Optimisation Techniques
	2.5.1 Backpropagation
	2.5.2 Scaled Conjugate Gradient
	2.5.3 Newton’s Method
	2.5.4 Quasi-Newton
	2.5.5 Gauss-Newton
	2.5.6 Levenberg-Marquardt

	2.6 Over-fitting and Generalisation
	2.7 ANN Implementation
	2.7.1 Data Mapping
	2.7.2 Pattern Recognition

	2.8 Conclusion

	Chapter 3  The implementation of Artificial Neural Networks and Other Methods for Vehicle Control
	3.1 Introduction
	3.2  Analysis
	3.2.1 Vehicle control using Artificial Neural Networks.
	3.2.2 Machine Vision Control Systems
	3.2.3 Algorithm Based Control Systems

	3.3 Conclusion

	Chapter 4  Technical and Mathematical Background
	4.1 Introduction
	4.2 Quaternions
	4.3 Ship Motion
	4.4 Harris-Stephens Corner Algorithm

	Chapter 5  Phase 1 Image Processing
	5.1 Introduction
	5.2 Methodology
	5.3 Results & Conclusions

	Chapter 6  Phase 2 Orientation and Distance
	6.1 Introduction
	6.2 Methodology
	6.2.1 Basis of Methodology
	6.2.2 Evolution of Methodology
	6.2.3 Final Methodology

	6.3 Results
	6.4 Conclusions

	Chapter 7  Phase 3 Landing Prediction
	7.1 Introduction
	7.2 Methodology
	7.3 Results
	7.4 Conclusions

	Chapter 8  Implementation of Phases 1, 2 and 3
	8.1 Introduction
	8.2 Results of Phase 1, 2 and 3 combined
	8.2 Conclusion

	Chapter 9  Conclusions and Recommendations
	9.1 Conclusions, Recommendations and Further Work

	Bibliography
	Appendix A
	Detailed treatment of  Eqn 11:
	Tables of  Results

	Appendix B
	Contents of DVD


