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Exploring definitions of daily enteric methane emission 
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of indoor-fed multi-breed growing cattle with feed intake 
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Abstract 
Genetic selection has been identified as a promising approach for reducing enteric methane (CH4) emissions; a prerequisite for genetic evalua-
tions; however, these are estimates of the necessary genetic parameters based on a population representative of where the genetic evaluations 
will be used. The objective of this study was, therefore, to derive genetic parameters for a series of definitions of CH4, carbon dioxide (CO2), and 
dry matter intake (DMI) as well as genetic correlations between CH4, CO2, and DMI in a bid to address the paucity of studies involving meth-
ane emissions measured in beef cattle using GreenFeed systems. Lastly, estimated breeding values (EBV) were generated for nine alternative 
definitions of CH4 using the derived genetic parameters; the EBV were validated against both phenotypic performance (adjusted for non-genetic 
effects) and the Legarra and Reverter method comparing EBV generated for a subset of the dataset compared to EBV generated from the entire 
dataset. Individual animal CH4 and CO2 records were available from a population of 1,508 multi-breed growing beef cattle using 10 GreenFeed 
Emission Monitoring systems. Nine trait definitions for CH4 and CO2 were derived: individual spot measures, the average of all spot measures 
within a 3-h, 6-h, 12-h, 1-d, 5-d, 10-d, and 15-d period and the average of all spot measures across the full test period (20 to 114 d on test). 
Heritability estimates from 1,155 animals, for CH4, increased as the length of the averaging period increased and ranged from 0.09 ± 0.03 for the 
individual spot measures trait to 0.43 ± 0.11 for the full test average trait; a similar trend existed for CO2 with the estimated heritability ranging 
from 0.17 ± 0.04 to 0.50 ± 0.11. Enteric CH4 was moderately to strongly genetically correlated with DMI with a genetic correlation of 0.72 ± 0.02 
between the spot measures of CH4 and a 1-d average DMI. Correlations, adjusted for heritability, between the adjusted phenotype and (parental 
average) EBV ranged from 0.56 to 1.14 across CH4 definitions and the slope between the adjusted phenotype and EBV ranged from 0.92 to 
1.16 (expectation = 1). Validation results from the Legarra and Reverter regression method revealed a level bias of between −0.81 and −0.45, 
a dispersion bias of between 0.93 and 1.17, and ratio accuracy (ratio of the partial evaluation accuracies on whole evaluation accuracies) from 
0.28 to 0.38. While EBV validation results yielded no consensus, CH4 is a moderately heritable trait, and selection for reduced CH4 is achievable.

Lay Summary 
Livestock production is a significant contributor to greenhouse gas emissions. Animal breeding programs have been proposed as a sustainable 
mitigation strategy to reduce enteric methane emissions in livestock production. Before creating a genetic evaluation for enteric methane 
production, it is important to estimate how much inter-animal genetic variability contributes to the observed differences in enteric methane 
production. The purpose of this study was to explore multiple enteric methane phenotypes and estimate how much phenotypic variation was 
due to genetic differences among 1,508 growing cattle of multiple breeds and crosses; also of interest was the extent of similarity in the genetic 
control of enteric methane, carbon dioxide, and feed intake (i.e., the genetic correlation) and to determine if selection of animals on the esti-
mated genetic merit for methane emissions of their parents would manifest itself in differences in actual methane produced by those animals. 
Between 9% and 43% of the inter-animal differences in daily enteric methane production were due to differences in the genetic composition of 
those animals; the genetic control influencing methane production was similar to that of feed intake (i.e., a strong genetic correlation between 
methane emissions and feed intake of up to 0.72).
Key words: beef cattle, heritability, carbon dioxide, GreenFeed, validation
Abbreviations: AP, adjusted phenotype; CH4, enteric methane; CO2, carbon dioxide; CVe, coefficient of residual variation; CVg, coefficient of genetic variation; 
DMI, dry matter intake; EBV, estimated breeding value; GEM, GreenFeed emission monitoring; ICBF, Irish Cattle Breeding Federation; NDIR, non-dispersive 
infrared sensor; RFID, radio frequency identification; TBV, true breeding value; TMR, total mixed ration
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Introduction
Livestock production is a contributor to global anthropogenic 
emissions of potent greenhouse gases, including enteric meth-
ane (CH4; Eisen and Brown, 2022). Enteric CH4, as a byprod-
uct of feed fermentation, accounts for a loss of 2% to 12% 
of the gross energy intake of cattle (Johnson and Johnson, 
1995); 89% of total CH4 produced by ruminants is excreted 
through eructation (Broucek, 2014). Reducing enteric CH4 
emissions through mitigation strategies remains a crucial step 
towards achieving global greenhouse gas reduction targets. 
Several studies have identified animal breeding as a promising 
approach for reducing CH4 emissions (Donoghue et al., 2016; 
Hayes et al., 2016; de Haas et al., 2021), emphasizing the role 
of animal breeding as an important part of the global strategy 
to addressing the issue of CH4 emissions in agriculture.

The advantage of animal breeding as a mitigation strategy 
to reduce CH4 emissions is that it is a cost-effective, perma-
nent, and cumulative approach (Knapp et al., 2014). In order 
to incorporate CH4 as a trait in a breeding goal, it is neces-
sary to establish a clear trait definition, which is recordable in 
an affordable manner, exhibits phenotypic variation, and is 
under genetic control (de Haas et al., 2017, 2021). Estimates 
of genetic parameters for the trait in question are required in 
the mixed model equations used in genetic evaluations. Several 
studies in sheep and cattle have previously demonstrated CH4 
to be moderately heritable with estimates varying depending 
on population and measurement method (Jonker et al., 2018; 
Garnsworthy et al., 2019); CH4 heritability estimates in dairy 
cattle using sniffers ranged from 0.13 to 0.32 (van Breukelen 
et al., 2022), whereas estimates from respiration chambers 
in Angus cattle ranged from 0.19 to 0.32 (Donoghue et al., 
2016, 2020). However, the majority of these estimates to date 
have been derived from dairy cow populations (Pszczola et 
al., 2017; Bittante and Cecchinato, 2020; López-Paredes et 
al., 2020; Manzanilla-Pech et al., 2021; Richardson et al., 
2021; van Breukelen et al., 2022), and little is known about 
the heritability of CH4 in beef populations and, in particular, 
beef populations where CH4 was measured using GreenFeed 
Emission Monitoring (GEM) systems. Genetic correlations 
between CH4 traits and feed intake estimated in Angus cattle 
populations (Donoghue et al., 2016, 2020; Manzanilla-Pech 
et al., 2016) are positive and range from moderate to strong; 
however, the genetic correlation between various CH4 defini-
tions and feed intake in multi-breed cattle populations col-
lected simultaneously using GEM systems and automatic feed 
stations is unknown. Lastly, although CH4 emissions have 
been demonstrated to be moderately repeatable (Ryan et al., 
2022), there remains substantial diurnal variation across CH4 
estimates; consequently, the impact of averaging a number of 
repeated spot measures per animal on the heritability estimate 
and contributing variance components is also of interest.

Therefore, the objective of this study was to use a large 
database of GEM system data from a cattle performance test 
facility to: (1) estimate genetic parameters for several defini-
tions of CH4, carbon dioxide (CO2), and dry matter intake 
(DMI); (2) estimate the genetic correlations between CH4, 
CO2, and DMI; and (3) validate the CH4 estimated breed-
ing values (EBV) produced by comparing parental average 
EBV for CH4 against actual phenotypic CH4. This is the first 
study to generate heritability estimates for CH4 from a multi-
breed population of growing beef cattle recorded using GEM 
systems and focuses on the practical application of research 

to genetic evaluations. The results from this study will help 
establish a method for developing EBV for an CH4 trait.

Materials and Methods
The data used in the present study were obtained from a pre-
existing database managed by the Irish Cattle Breeding Federa-
tion. Therefore, it was not necessary to obtain animal care and 
use committee approval in advance of conducting this study.

Phenotypic data
The dataset used in this study is an expanded dataset of that 
previously described in detail by Ryan et al. (2022). Briefly, 
CH4 and CO2 flux measurements were recorded between the 
years 2018 and 2022 using 10 GEM systems in the Gene 
Ireland Progeny Performance Test Center (https://www.icbf.
com/?page_id=12900) located in Tully, Co. Kildare, Ireland 
which operates as a commercial feedlot. Details of the CH4, 
CO2 and feed intake measurements, and the diet fed and how 
the cattle were acclimatized to the GEM are described in detail 
elsewhere (Ryan et al., 2022). Briefly, a total mixed ration of 
~13.95% hay, 45.35% concentrates, and 40.7% water was 
provided to the steers and heifers once per day during the test 
period with a paddle mixer wagon. The total mixed ration 
was estimated to have a dry matter of 51% and a metaboliz-
able energy value of 12.1 MJ/kg DM. Young bulls were fed 
concentrates ad libitum, based on the consumption of feed 
during the acclimatization period. GEM system feed storage 
bins were filled with concentrates every second day. The con-
centrates offered within the GEM system to all test animals 
had dry matter of 86% and a metabolizable energy concen-
tration of 14.1 MJ/kg DM. Measurements were recorded on 
animals ranging from 356 to 897 d of age at test start date 
and consisted of 862 steers, 488 heifers, and 158 young bulls, 
with all animals slaughtered immediately after the end of the 
test. All cattle were grouped in pens of 25 animals accord-
ing to their sex, liveweight, and breed, and each group was 
referred to as a cohort. Cohorts were comprised of animals 
of the same animal type, i.e., suckler-bred beef, beef-sired ani-
mals from the dairy herds, and dairy-bred animals. The breed 
breakdown of the animals included in this study, by sire and 
dam breed, are described in Supplementary Table S1. Mean 
liveweight at the end of test period was 652 kg (SD = 68.6 kg) 
for steers, 651 kg (standard deviation = 62.5 kg) for heifers, 
and 672 kg (standard deviation = 65.2 kg) for young bulls.

The GEM systems used in this study were manufactured 
by C-Lock Inc (C-Lock Inc., Rapid City, South Dakota). All 
GEM systems were calibrated at the start of each test period 
and machine settings are described elsewhere (Ryan et al., 
2022). The test period ranged from 20 to 114 d in length and 
was the period of time where animals had full access to the 
GEM system post-acclimatization. Details of the number of 
records and animals per GEM system machine are in Supple-
mentary Table S2. The number of visits differed by machine 
due to varying lengths of time each machine was at the test 
center, with the oldest GEM system accumulating the greatest 
number of records (n = 71,135) and animals (n = 313). Ani-
mals that did not use the GEM system were not included in 
the analysis. Ancestry data were available on all animals, and 
all animals included in the analysis were parentage and breed 
verified using genotype data. Prior to edits, a total of 400,960 
GEM system individual spot measures were available from 
1,508 animals destined for slaughter.
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Data edits
Test period length in the present study varied by cohort and 
consisted of a start date (i.e., when all animals in the pen 
had acclimatized to the GEM system) and an end date, imme-
diately prior to slaughter. Test period length per cohort was 
determined by management decisions taken in the test sta-
tion. Only CH4 spot measures at least 2 min in duration were 
retained. Furthermore, the top 1% and bottom 1% of values 
for each trait were discarded (n = 7,878; Supplementary Fig-
ure S1). The total number of visits per animal to the GEM 
ranged from 1 to 459 visits throughout the test period and the 
total number of days each animal visited to the GEM system 
at least once ranged from 1 to 113 d. After edits, GEM system 
data were available on 1,473 animals.

A total of 4,123,569 feed intake visits were recorded using 
automatic feed stations (RIC Feed-Weigh Trough, Hokofarm 
Group BV, Marknesse, The Netherlands) on all animals with 
GEM system measures. Feed intake was estimated as the total 
feed consumed per animal from both GEM systems and auto-
matic feed stations each calendar day. Feed intake records 
were quality controlled by using a feeding rate metric (i.e., 
weight of feed consumed divided by the duration of visit) with 
the top and bottom 0.5% removed from the analysis (Kelly 
et al., 2020). Top and bottom 1% feed intake values based 
on the weight of feed consumed daily were also removed. To 
ensure all feed intake data directly related to the same period 
as GEM system measurements, only feed intake records 
recorded when the animal also had access to the GEM system 
were retained.

Trait definitions
Each individual GEM CH4 and CO2 emission spot measure 
is reported as grams per day per spot measure, resulting in 
animals potentially having multiple CH4 and CO2 grams per 
day values. Nine different trait definitions for CH4 and CO2 
were generated in the present study with the simplest con-
sisting of all the individual spot CH4 measures. As the length 
of the test period varied per cohort, the opportunity for a 
different number of emission spot measures varied per ani-
mal. Seven time period definitions were constructed for both 
CH4 and CO2 using the following fixed time periods where 
the individual spot measures were averaged within each; 3-h, 
6-h, 12-h, 1-d, 5-d, 10-d, and 15-d which were collectively 
referred to as multi-hour or multi-day averaged traits (Sup-
plementary Table S3 and Figure S2). For DMI, feed consumed 
was summed in 3-h, 6-h, 12-h, and 1-d periods and averaged 
across days in the 5-d, 10-d, and 15-d periods. Feed intake 
duration varied largely (average = 166 s, minimum = 12 s, 
and maximum = 1,181 s). Additionally, a DMI trait for DMI 
consumed in the time periods prior to the GEM system mea-
surement was also derived for the 3-,6-, and 12-h preceding 
periods (DMIprior). The DMIprior correlation analysis was used 
to assess whether CH4 output may be more influenced by feed 
intake in the period prior to CH4 measurement. Lastly, a sin-
gle full test average per animal trait definition was used where 
all GEM system CH4 and CO2 spot measures and separately 
daily DMI throughout the test were averaged (Supplementary 
Figure S2). All nine GEM trait definitions were reported in 
grams per day (Supplementary Table S3 and Figure S2). As a 
result, each of the 1,473 animals had at least one phenotype 
for all nine traits for GEM system measurements for CH4 and 
CO2 separately.

Statistical analyses
(Co)variance component estimation.
Additional edits for parameter estimation included the 
removal of 13 animals with missing sires and a further 297 
animals whose sires did not have a minimum of three prog-
eny per cohort, along with the removal of eight animals that 
visited the GEM systems on less than four individual days 
across the test period (Supplementary Figure S1). In total, 318 
animals did not meet the inclusion criterion for parameter 
estimation. After these edits, GEM emission measurements 
and feed intake records were available on 1,155 animals of 
which 611 were steers, 421 were heifers and 123 were young 
bulls. Genetic parameters were estimated for all nine GEM 
trait definitions (CH4 and CO2 separately) and eight DMI 
definitions using univariate animal models in DMU (Madsen 
and Jensen, 2013) and included repeated records for all traits 
with the exception of the full test average trait. Relationships 
among animals were accounted for in the mixed models using 
the numerator relationship matrix constructed using five 
generations, where available; the pedigree file consisted of 
14,288 animals. Three statistical models were used to esti-
mate genetic parameters for CH4, CO2, and DMI:

(1)	 Full test average model:

y = Xb + Za+ e

where y is the average phenotype across the duration of the 
test; X is the appropriate incidence matrix linking effects 
to the relevant animals; b is a vector of fixed effects which 
included the fixed class effects of contemporary group and 
the fixed regressions of breed composition, age and heterosis; 
a is a vector of random additive genetic effects with incidence 
matrix Z, and e is a vector of random residual values. Con-
temporary group included cohort number (number assigned 
to a group of animals within a pen that were grouped accord-
ing to their sex, live weight, breed, and type composition, i.e., 
suckler-bred beef, beef-sired animals from the dairy herds and 
dairy bred animals) and GEM system number. Breed compo-
sition represented the proportion of each breed present in the 
animal, with 14 breeds included (Angus, Aubrac, Belgian Blue, 
Charolais, Friesian, Hereford, Holstein, Jersey, Piedmontese, 
Parthenaise, Saler, Shorthorn, Simmental, and Other). Due to 
the nature of data collection, animals attended only one GEM 
system, resulting in one phenotype per full test average trait.

(2) Multi-day average repeated model:

y = Xb + Za + Pu+ e

where y is the average phenotype across 1, 5, 10, and 15 d 
of test, X is the appropriate incidence matrix linking effects 
to the relevant animals, b is a vector of fixed effects similar 
to the full test average model; a is a vector of random addi-
tive genetic effects with incidence matrix Z; u is a vector of 
random within multi-day period permanent environmental 
effects, with incidence matrix P and e is a vector of random 
residual values. Contemporary groups for each multi-day 
(1-d, 5-d, 10-d, and 15-d) averaged phenotypes included the 
time period (day(s) of the test) across which records were 
averaged, cohort number, and GEM system number.
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(3) Hourly averaged repeated model:

y = Xb + Za + Wv + Pu+ e

where y is the average phenotypes across 3, 6, and 12 h, X is 
the appropriate incidence matrix linking effects to the relevant 
animals, b is a vector of fixed effects, respectively, similar to 
those present in the multi-day average repeated model above; 
a is a vector of random additive genetic effects with incidence 
matrix Z, v is a vector of random within-day, across time (3-h, 
6-h, and 12-h periods) effects, with incidence matrix W; u 
is a vector of random within-day permanent environmental 
effects, with incidence matrix P and e is a vector of random 
residual values. For the hourly averaged phenotypes, contem-
porary group definition included cohort number, GEM sys-
tem number, and the time-of-day period (3, 6, or 12-h period 
in which the measurement occurred) and observation date.

For the analysis of the spot measures, a fixed effect rep-
resenting time of day was also added to the b vector of this 
model (3). Six classes were used for time of day, with each 
day split into six defined 4-h periods. Contemporary group 
included observation date, cohort number, and GEM system 
number.

Genetic covariances between each of the nine CH4 trait defi-
nitions, the nine CO2 trait definitions, and the eight DMI trait 
definitions were estimated using a series of bivariate analyses 
using the model fitted in the univariate analyses. In addition, 
bivariate analysis between the 3, 6, and 12-h averaged CH4 
traits and the DMI estimate from the preceding time period, 
i.e., a 3-h averaged CH4 measurement was correlated with the 
DMI in the 3-h period prior to the CH4 measurement (DMI-

prior). A bivariate analysis between the spot measure CH4 and 
1-d average DMI was also conducted.

EBV estimation and validation
EBV and their associated accuracies for CH4 were calculated 
using the genetic parameter estimates calculated in DMU and 
the larger dataset of 1,473 animals. These quality control 
edits applied to the larger dataset of 1,473 animals, are more 
representative of normal data editing practise applied in rou-
tine genetic evaluations. EBV were computed using MiX99 
software (MiX99 Development Team, 2017) using the mod-
els from the univariate analyses. Following the addition 
of the breed covariate solutions to assess stability of EBV 
across trait definitions, Pearson correlation coefficients were 
estimated between the EBV across each of the different CH4 
trait definitions (i.e., spot measure CH4 and 3-h CH4, spot 
measure CH4 and 6-h CH4, etc.) for the 1,473 phenotyped 
animals. EBV were validated using two approaches, the first 
approach involved the computation of phenotypes adjusted 
for fixed effects followed by the regression of the adjusted 
phenotypes (AP) on the respective EBV of the animal. The 
second approach also involved the use of linear regression 
using the method as described by Legarra and Reverter, 
(2018) and Macedo et al. (2020) which utilizes EBV from 
partial and whole datasets and their respective exact accu-
racies.

(1)Adjusted phenotype validation.
AP for each animal were calculated using MiX99 for all 
1,473 animals. Phenotypes were adjusted for contemporary 
group, age, and heterosis while the random genetic, random 

permanent environment, breed, and residual error remained 
in the AP. The adjustment process, as defined by VanRaden 
and Wiggans, (1991), ensures that the AP values reflect the 
true genetic differences among animals, with minimal influ-
ence of other non-genetic factors. To assess the accuracy of 
the EBV, four validation subpopulations were derived where 
each validation subpopulation represented approximately 
one-quarter of the full dataset. Whole contemporary groups 
were masked in the validation evaluations rather than indi-
vidual animals within a contemporary group; the number 
of animals per validation subpopulation was 361, 305, 424, 
and 383. Four genetic evaluations were undertaken using 
the model already described with the phenotypes of the val-
idation population masked. Prediction success for each val-
idation animal was computed as (a) the bias or regression 
slope of the average AP on the parental average EBV from the 
evaluation excluding that individual’s phenotype, and (b) the 
correlation between average AP and parental average EBV. 
For each trait definition, the regression slope and correlation, 
herein referred to as AP-on-EBV validation, were computed 
between the corresponding AP and the parent average EBV. 
A weighted average across each of the four replicates was 
calculated for the regression slope and correlation, along 
with standard deviation for each metric across replicates as a 
measure of robustness. Additionally, the correlation was stan-
dardized by the square root of the heritability of each trait to 
enable comparison across trait and trait definitions (Legarra 
and Reverter, 2018).

(2) Legarra and reverter validation.
The validation followed a linear regression approach as 
described by Legarra and Reverter, (2018) and Macedo et al., 
(2020) using two sets of EBV: a ‘whole’ dataset of EBV com-
puted from all 1,473 phenotypes, and a ‘partial’ dataset of 
EBV computed from the four validation genetic evaluations 
(as previously described), and herein referred to as EBV-on-
EBV validation. All EBV were adjusted to a common base 
(sires with progeny in more than one validation cohort). Pre-
diction success from this method was measured from a linear 
regression of the whole evaluation EBV run on each partial 
evaluation EBV (parental average EBV) and included: (a) level 
bias was computed as the average difference between whole 
and partial genetic merit, a value of 0 is the ideal indicating 
no bias, a value < 0 indicates over prediction of average val-
idation EBV and a value > 0 suggests under prediction; (b) 
dispersion bias computed as the slope of a linear regression of 
EBV from the whole dataset on those from the partial data, 
where a value of 1 is the expected, a value < 1 suggests over 
prediction and a value > 1 suggests under prediction; and (c) 
the ratio of the partial evaluation accuracies on whole evalua-
tion accuracies calculated as the covariance of the partial EBV 
to whole EBV, divided by variance of whole EBV. All valida-
tion metrics were then averaged across the four replicates and 
the standard deviation of these metrics was also calculated as 
a measure of robustness.

Results
Individual CH4 spot measures ranged from 52 to 524 g/d, 
with an average full test CH4 estimate of 242.4 g/d (Sup-
plementary Table S4). The CO2 spot measures ranged from 
4,867 to 14,794 g/d with an average full test CO2 estimate of 
9,504.7g/d, while the 1-d average DMI had a mean of 12.3 kg 
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of dry matter per day and ranged from 5.0 to 17.5 kg/d in the 
full test average DMI (Supplementary Table S4).

(Co)variance components
The estimated additive genetic standard deviation was 
relatively consistent for all nine CH4 trait definitions 
(mean = 22.15 g/d, min. = 20.62 g/d, max. = 23.24 g/d). 
However, as the duration of the time period considered 
increased from individual spot measures to full test average, 
the residual standard deviation reduced (mean = 39.38 g/d, 
min. = 20.11 g/d, max. = 60.03 g/d) resulting in higher heri-
tability estimates as the period over which the measures were 
averaged lengthened (Table 1). This was reflected in the coef-
ficient of residual variation (CVe) for CH4 ranging from 8.3% 
to 24.4% with the spot measure trait exhibiting the largest 
environmental variation. The heritability for CH4 ranged 
from 0.09 ± 0.03 for the spot measure trait to 0.43 ± 0.11 for 
full test average trait (Table 1), with the lowest standard error 
(0.03) observed in the spot measure trait definition. For all 
CH4 traits, as the heritability estimate increased, so too did 
the standard error. The coefficient of genetic variation (CVg) 
for CH4 ranged from 8.4% to 9.4% across trait definitions 
with the 3-h CH4 trait definition exhibiting the largest genetic 
variability.

The genetic standard deviation for CO2 was largest 
(578.2 g/d) for the 6-h average CO2 trait, followed by the 
spot measure CO2 (572.2 g/d). The CVg of CO2 was con-
sistent across all traits ranging from 5.50% to 5.98%, with 
a mean CVg of 5.67%. Heritability estimates for the CO2 
traits increased as the average time period increased, with 
estimates ranging from 0.17 ± 0.04 for the spot measure 
trait to 0.50 ± 0.11 for the full test average trait. Heritabil-
ity estimates for DMI increased as the time period consid-
ered increased with estimates ranging from 0.03 ± 0.01 (3-h 
average) to 0.55 ± 0.12 for the full test average DMI trait 
(Table 1).

Repeatability ranged from 0.27 for spot measures of CH4 
to 0.71 for the 15-d average CH4 trait (Table 1). Similarly, 
the repeatability of CO2 was 0.31 for spot measures and 0.77 
for the 15-d average. Repeatability of DMI also had a similar 
trend; 3-h DMI had a repeatability of 0.07 and 15-d average 
DMI had a repeatability of 0.81(Table 1).

Genetic correlations
Genetic correlations between CH4 and DMI ranged from 
moderate to strong (Table 2). The genetic correlation cal-
culated between an individual CH4 spot measure and 1-d 
average DMI trait had the strongest genetic correlation of 
0.72 ± 0.06. Moderate genetic correlations between CH4 and 
DMI were observed in all multi-day periods, ranging from 
0.38 ± 0.16 in the 15-d average period to 0.49 ± 0.15 in the 
full test average period (Table 2). The weakest correlation 
observed in the multi-hour traits was between 3-h average 
CH4 and 3-h DMIprior (0.25 ± 0.19), albeit not significant; 
the 6-h CH4 period yielded a correlation of 0.41 ± 0.15 with 
6-h DMIprior, whereas the strongest correlation was observed 
between 12-h CH4 and 12-h DMIprior (0.45 ± 0.15).

Carbon dioxide and DMI were strongly correlated across 
all trait definitions (Table 2) with correlations ranging from 
0.78 ± 0.08 for full test average to 0.89 ± 0.03 for the 3-h 
average. Spot measure CO2 and DMI had a correlation of 
0.87 ± 0.03. A moderate correlation of 0.62 ± 0.12 was 
observed between spot measures of CH4 and spot measures 
of CO2, with all CH4 trait definitions also yielding a strong 
correlation ranging from 0.60 to 0.63.

Estimated breeding values
The standard deviation of the EBV for CH4 ranged from 
10.91 to 15.83 g/d depending on the CH4 trait definition. 
Correlations between the resulting EBV for all CH4 trait defi-
nitions from all phenotyped animals (n = 1,473) were near 
unity between the individual spot measures, 3-h, 6-h, 12-h, 

Table 1. Genetic and residual standard deviation (σ), heritability (h2) with standard error (SE) and repeatability (t) in parenthesis of enteric methane (CH4), 
carbon dioxide (CO2), and dry matter intake (DMI) based on 1,155 animals.

Number 
of records

Average number of 
records per animal

CH4 (g/d) CO2 (g/d) DMI (kg/d)

σg σe
h2

(SE)
t σg σe

h2

(SE)
t σg σe

h2

(SE)
t

Spot 
measures

186,131 156.1 20.6 60.0 0.09
(0.03)

0.27 572.2 1137.6 0.17
(0.04)

0.31 — — — —

3-h 
average

183,409 150.9 23.2 53.0 0.12
(0.03)

0.35 566.4 977.8 0.20
(0.05)

0.41 0.1 0.9 0.03
(0.01)

0.07

6-h 
average

166,120 135.7 22.8 54.4 0.12
(0.03)

0.33 578.2 999.4 0.20
(0.04)

0.40 0.3 1.0 0.06
(0.02)

0.10

12-h 
average

106,714 87.1 22.0 47.7 0.13
(0.04)

0.39 532.7 903.5 0.19
(0.05)

0.44 0.5 1.2 0.12
(0.03)

0.21

1-d 
average

59,489 51.5 22.2 43.3 0.17
(0.05)

0.36 530.5 790.3 0.24
(0.06)

0.47 1.0 1.4 0.28
(0.07)

0.45

5-d 
average

13,256 11.5 22.4 27.6 0.28
(0.07)

0.57 537.1 520.6 0.35
(0.08)

0.67 1.0 0.8 0.43
(0.10)

0.72

10-d 
average

6,999 6.1 22.1 23.4 0.31
(0.08)

0.65 531.3 444.8 0.38
(0.09)

0.73 1.0 0.7 0.45
(0.10)

0.77

15-d 
average

4,852 4.2 22.4 20.1 0.36
(0.09)

0.71 539.4 394.9 0.42
(0.10)

0.77 1.0 0.6 0.49
(0.11)

0.81

Full test 
average

1,155 1 21.6 24.8 0.43
(0.11)

— 531.6 528.2 0.50
(0.11)

— 1.0 0.9 0.55
(0.12)

-
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1-d average, and 5-d average CH4 traits (Table 3). However, 
the weakest correlation of 0.837 was different from one 
(P-value < 0.05) and was observed between the 10-d average 
CH4 and the full test average CH4 trait definition (Table 3). 
Similar results were observed between EBV for all CH4 trait 
definitions adjusted for breed effects. Exact accuracies esti-
mated in MiX99 as part of the EBV validation for two CH4 
traits (spot measure CH4 and full test average CH4) are in 
Figure 1 and were grouped by the number of GEM system 
observations per animal. As shown in Figure 1, three distinct 
outliers where spot measure exact accuracy was < 0.50 and 
full test average exact accuracy was < 0.65 were identified; 
all three animals had less than 10 GEM system observations 
in the test period and were in two separate contemporary 
groups. Animals with less than 10 visits to the GEM system, 

of which there were six in this study, had an exact accuracy 
average for spot measures of CH4 of 0.485 and exact accu-
racy average for full test average CH4 of 0.652 for the full test 
average CH4 definition. In contrast, animals with more than 
10 GEM system visits had an average exact accuracy for spot 
measures CH4 of 0.619 and 0.657 for full test average CH4.

(1)	 AP-on-EBV validation

Table 4 shows the validation results for all CH4 traits across 
both the adjusted phenotype validation and the linear regres-
sion validation. The correlation between EBV and corre-
sponding AP ranged from 0.33 to 0.37 but did not differ from 
each other (P-value > 0.05). Following adjustment of the cor-
relations to reflect heritability of the trait, the spot measure 
trait definition yielded the highest mean adjusted correlation 
between the EBV and corresponding AP (when adjusted for 
the heritability [Legarra and Reverter, 2018]) of 1.14 with 
a range of 0.87 to 1.43, where one is the desired value. The 
3-h, 6-h, and 12-h also yielded strong adjusted correlations 
between EBV and corresponding AP of 0.95, 0.96, and 0.92, 
respectively, with a reduction in correlation for every increase 
in averaging period thereafter, with the full test average defini-
tion yielding the weakest correlation of 0.56. Standard devia-
tion of correlation across replicates ranged from 0.05 in 15-d 
average CH4 to 0.07 for both 6-h average and 12-h average 
CH4. Results for the slope of the regression between EBV and 
corresponding AP suggest underprediction of the parental 
average EBV in all CH4 trait definitions with the exception of 
the full test average which was overpredicted (1.16; Table 4). 
The slope closest to 1, suggesting no over or underprediction 
of the EBV from the AP, was observed in the spot measure 
CH4 trait (0.98) which was different (P-value < 0.05) from all 
other definitions, with the exception of the 3-h average CH4. 
Standard deviation of the slope across replicates ranged from 
0.22 in 15-d average CH4 to 0.28 in full test average CH4.

(2)	 EBV-on-EBV validation

Level bias results indicate underprediction of EBV for all 
trait definitions (Table 4). The spot measure CH4 trait defi-
nition was the least underpredicted (−0.45 g/d), with the full 
test average CH4 trait indicating substantial underprediction 
(−0.81 g/d). Both spot measure CH4 and full test average 
CH4 were different from each other (P-value < 0.05) and 
different from zero (P-value < 0.05). Standard deviation for 

Table 2. Genetic correlations (rg) and standard error (SE) between enteric 
methane (CH4) and corresponding dry matter intake (DMI), and carbon 
dioxide (CO2) and corresponding dry matter intake averaged across 
varying time periods

Trait description DMI

rg (SE)

 � CH4 Spot measure 1 0.72 (0.06)

3-h average 0.52 (0.17)

6-h average 0.44 (0.15)

12-h average 0.46 (0.15)

1-d average 0.48 (0.14)

5-d average 0.45 (0.15)

10-d average 0.43 (0.16)

15-d average 0.43 (0.16)

Full test average 0.49 (0.15)

 � CO2 Spot measure 1 0.87 (0.03)

3-h average 0.89 (0.08)

6-h average 0.82 (0.07)

12-h average 0.80 (0.07)

1-d average 0.80 (0.07)

5-d average 0.78 (0.07)

10-d average 0.76 (0.08)

15-d average 0.78 (0.07)

Full test average 0.78 (0.08)

1Genetic correlation with 1-d average dry matter intake (DMI).

Table 3. Pearson correlation coefficients between estimated breeding values (EBV) of varying enteric methane (CH4) trait definitions and summary 
statistics for phenotyped animals

Spot measure 3-h average 6-h average 12-h average 1-d average 5-d average 10-d average 15-d average Full test average

3-h average 0.994 — — — — — — — —

6-h average 0.991 0.995 — — — — — — —

12-h average 0.990 0.990 0.996 — — — — — —

1-d average 0.988 0.983 0.986 0.990 — — — — —

5-d average 0.981 0.975 0.978 0.983 0.993 — — — —

10-d average 0.970 0.963 0.966 0.970 0.981 0.995 — — —

15-d average 0.974 0.968 0.972 0.977 0.988 0.991 0.986 — —

Full test average 0.850 0.846 0.846 0.848 0.852 0.846 0.837 0.843 —

All values were different from 1 (P-value < 0.05).
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Figure 1. Scatter plot with exact accuracies from the full evaluation for spot measure methane and full test average methane, by total number of visits 
to the GreenFeed Emission Monitoring (GEM) system.

Table 4. Mean and standard deviation of validation results from adjusted phenotype (AP-on-EBV) validation and the legarra and reverter (EBV-on-EBV) 
validation of enteric methane (CH4) traits

AP-on-EBV Validation EBV-on-EBV Validation

Correlation Adjusted Correlation Slope Level bias Dispersion bias Ratio accuracy

Spot measure 0.34 ± 0.06 1.14 ± 0.20 0.98 ± 0.23 −0.45 ± 2.54 1.17 ± 0.23 0.38 ± 0.05

3-h average 0.33 ± 0.06 0.95 ± 0.18 0.96 ± 0.23 −0.57 ± 2.89 1.09 ± 0.22 0.34 ± 0.06

6-h average 0.33 ± 0.07 0.96 ± 0.20 0.93 ± 0.23 −0.62 ± 2.19 1.03 ± 0.22 0.31 ± 0.06

12-h average 0.33 ± 0.07 0.92 ± 0.19 0.92 ± 0.23 −0.56 ± 2.45 1.00 ± 0.22 0.30 ± 0.05

1-d average 0.33 ± 0.06 0.80 ± 0.16 0.93 ± 0.25 −0.52 ± 2.30 1.07 ± 0.19 0.34 ± 0.05

5-d average 0.33 ± 0.06 0.62 ± 0.11 0.94 ± 0.24 −0.67 ± 2.66 1.07 ± 0.16 0.35 ± 0.04

10-d average 0.33 ± 0.05 0.60 ± 0.10 0.94 ± 0.24 −0.74 ± 2.68 1.06 ± 0.15 0.36 ± 0.05

15-d average 0.34 ± 0.06 0.56 ± 0.10 0.93 ± 0.22 −0.65 ± 3.40 1.05 ± 0.18 0.35 ± 0.04

Full test average 0.37 ± 0.06 0.56 ± 0.09 1.16 ± 0.28 −0.81 ± 4.95 0.93 ± 0.19 0.28 ± 0.03

Correlation, correlation between the adjusted phenotype and parental average estimated breeding value (EBV); Adjusted correlation, correlation divided 
by 

√
h2  to express the correlation relative to an expectation of 1; Slope, slope of a linear regression between adjusted phenotype and parental average EBV; 

level bias, difference between whole and partial EBV after adjusting to a common base; dispersion bias, slope of a linear regression of EBV from the whole 
dataset on those from the partial data; ratio accuracy, ratio of the partial evaluation accuracies on whole evaluation accuracies. AP, adjusted phenotypes.
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level bias across replicates ranged from 2.19 g/d in the 6-h 
average CH4 to 4.95 g/d in the full test average CH4. The 
dispersion bias validation metric varied from 0.93 (overpre-
diction of parental average EBV) for the full test average 
CH4 trait definition to 1.17 (underprediction of parental 
average EBV) in the spot measure CH4 trait definition. Dis-
persion bias for spot measure CH4 was different from all 
other trait definitions (P-value < 0.05) and different from the 
expectation of one (P-value < 0.05). Dispersion bias results 
for the multi-day average traits yielded similar results (1.05 
to 1.07), were not significantly different from each other 
(P-value > 0.05) but were different from the expectation 
of one (P-value < 0.05). The trait definition with least bias 
when measured on dispersion bias was the 12-h average CH4 
trait (1.00), with both the full test average CH4 trait and 1-d 
average CH4 trait performing equally relative to the expecta-
tion of one. Standard deviation of dispersion bias across rep-
licates ranged from 0.15 in 10-d average CH4 to 0.23 in spot 
measure CH4. Ratio accuracy, which was the ratio of the 
partial evaluation accuracies to whole evaluation accuracies, 
with a desired value of 1, ranged from 0.28 to 0.38, with 
higher ratio accuracies observed in shorter averaging periods 
(Table 4). The highest ratio accuracy was observed in the 
spot measure CH4 trait (0.38) and was different from all 
other trait definitions (P-value < 0.05) with the lowest ratio 
accuracy observed in the full test average CH4 trait (0.28). 
Standard deviation of ratio accuracy ranged from 0.03 in 
full test average CH4 to 0.06 in both 3-h average and 6-h 
average CH4.

Discussion
Knowledge of the genetic and residual variance components 
is necessary to generate genetic evaluations for CH4. Heri-
tability estimates for CH4, CO2, and DMI observed in the 
present study are similar to existing estimates from cattle 
(Crowley et al., 2010; Donoghue et al., 2016; Hayes et al., 
2016; Manzanilla-Pech et al., 2016; van Engelen et al., 2018; 
Breider et al., 2019; van Breukelen et al., 2022). The present 
study demonstrates that CH4 emissions are under moderate 
genetic control and exhibit genetic variation irrespective of 
the trait definition, thereby suggesting it is possible to select 
animals for reduced daily CH4 emissions.

Reducing methane emissions through genetics
Genetic variation, intensity of selection, accuracy of identi-
fying genetically divergent animals, and generation interval 
are the integral components of genetic gain (Rendel and 
Robertson, 1950). Houle (1992) argued that the CVg is 
potentially more informative than the heritability to quan-
tify the capacity for genetic change; because it is unitless, 
the CVg also facilitates comparison of the genetic variabil-
ity across traits (and across studies with different sample 
population means). The CVg for CH4 of between 8.4% and 
9.4% in the present study is similar, if not higher, than 
reported for traits such as average daily gain in beef (7.8%, 
Crowley et al., 2010) or milk production in dairy cows 
(6.2%; Berry et al., 2003) both of which are well docu-
mented to have benefited greatly from breeding programs. 
Using the (within breed) mean genetic standard deviation 
of 22.1 g/d for CH4, the expected mean difference, within 
breed, in CH4 for the bottom 10% emitters genetically 
relative to the population average is 38.76 g/d. Focusing 

just on a 100-d finishing period, this equates to 3.88 kg 
CH4 translating to 3,876 tons CH4 per 1 million animals, 
just over their 100-d finishing period. How knowledge on 
whether EBV for CH4 emissions for finishing cattle fed 
indoors on a high input feeding system translates to CH4 
emissions earlier in life, possibly when the animal is graz-
ing, is not yet known.

Heritability is not explicitly a direct component of the 
breeder’s equation (Rendel and Robertson, 1950) but it does; 
however, impact the accuracy of selection. For traits well 
recorded in some jurisdictions like growth rate, carcass merit, 
or reproductive performance, the vast quantity of available 
phenotypic data mitigates any low heritability (e.g., repro-
ductive performance; Berry, 2018). Heritability is an import-
ant statistic when developing a breeding program for traits 
that are resource-intensive to measure, as is the case for CH4 
(and DMI). Based on the spot measure CH4 trait with the 
estimated variance components in the present study (heri-
tability of 0.09 and repeatability of 0.27), the accuracy of 
selection for a sire (ignoring parental contributions and any 
genomic information) with 1, 5, 10, and 20 progeny would 
be 0.15, 0.32, 0.43, and 0.56, respectively; should the CH4 be 
measured on the selection candidate itself, then the accuracy 
of selection from a test with 10 observations would be 0.51. 
Genetic evaluations for beef cattle globally are transitioning 
to genomic evaluations (Berry et al., 2016). Assuming 1,000 
effective chromosomal segments and that single nucleotide 
polymorphisms could explain 80% of the genetic variance, 
based on the heritability (repeatability) of 0.09 (0.27) for spot 
measures of CH4, a calibration population with CH4 pheno-
types on 7,390 cattle would be required to generate genomic 
predictions with an accuracy of 0.70; a calibration popu-
lation size of 32,767 cattle with CH4 phenotypes would be 
required to achieve a desirable accuracy of 0.90. In contrast, 
assuming a heritability of 0.43 for a full test average CH4, 
a reference population with CH4 phenotypes on just 19,949 
cattle would be required to generate genomic predictions with 
an accuracy of 0.90.

Heritability estimates for all CH4 trait definitions in the 
present study were moderate and similar to existing heritabil-
ity estimates for CH4 in cattle. Previously reported heritabil-
ity estimates for CH4 in cattle have ranged from 0.11 ± 0.02 
(Netherlands; van Engelen et al., 2018) to 0.45 ± 0.11 (United 
Kingdom; Breider et al., 2019) with the difference in estimates 
attributable, in part, to differences in trait definitions, mea-
surement method, length of test period and the population 
the heritability was derived from. While few studies have esti-
mated heritability for CH4 from beef populations, estimates 
from beef populations to date have been derived from respi-
ration chamber measurements on Angus cattle (Donoghue et 
al., 2016, 2020; Hayes et al., 2016; Manzanilla-Pech et al., 
2016) and, to the best of our knowledge, no estimates using 
GEM systems in beef have been previously reported. The 
increase in heritability as the number of spot measures and 
test length contributing to the individual animal phenotype 
increased is consistent with expectations (Berry et al., 2017) 
as the random variability contributing to the individual mea-
sures is expected to be evened out.

While CH4 and nitrous oxide are two potent greenhouse gas 
emissions from livestock, CO2 remains a significant contrib-
uting factor to greenhouse gas emission levels. Despite this, 
limited research to date has been documented on the contri-
bution of genetic variability to phenotypic differences in CO2 
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of cattle. Heritability estimates for CO2 emissions traits in 
the present study (0.17 to 0.50) were comparable with those 
previously estimated by Donoghue et al. (2020; 0.53 ± 0.17) 
in Australian Angus beef cattle albeit with different measure-
ment methods. Van Breukelen et al. (2022) also determined 
CO2 heritability using sniffers in a population of Dutch dairy 
cows and reported similar heritability estimates for daily 
and weekly means with estimates ranging from 0.16 ± 0.02 
to 0.34 ± 0.03 and heritability estimates increasing in lon-
ger averaging periods. The CVg of CO2 was lower than CH4, 
with the maximum CVg of CO2 of 5.98% in the 6-h average, 
with spot measure CO2 having a CVg of 5.94%. While CVg of 
CO2 is lower than CH4, it is comparable with the 6.2% CVg 
observed in milk production of dairy cows (Berry et al., 2003) 
suggesting genetic gain is achievable.

The DMIprior correlation analysis highlighted stronger cor-
relations where CH4 and DMI were recorded concurrently, 
suggesting that it is best to collect both phenotypes contem-
poraneously or as closely as possible. Due to the extensive 
grazing nature of Irish production systems, DMI recording at 
pasture is not a viable option due to the intensive and inva-
sive nature of data recording (Mayes et al., 1986). The strong 
correlation between CH4 with DMI confirms the potential 
use of CH4 as proxy for DMI in pasture-based situations 
and CH4 could be recorded using pasture-based GEM sys-
tems (Donoghue et al., 2020). As CO2 is also collected by 
the GEM system and has stronger correlations with DMI in 
all time periods, CO2 also offers another proxy measure for 
DMI, where feed intake data collection may not be possible. 
Whether these correlations hold in grazing situations needs to 
be investigated.

Practical applications
Given the societal pressure to reduce CH4 emissions from 
the agricultural sector, it is likely that the collection of CH4 
phenotypic data will continue in order to facilitate the devel-
opment of accurate genetic evaluations; however, the quality 
control applied to the data needs further exploration. Spot 
measure-based CH4 evaluations facilitate a data structure 
that may be representative of commercial farm and feedlot 
settings, with different test lengths as well as accommodating 
the inclusion of data from animals that do not regularly fre-
quent the GEM. EBV accuracy was impacted by GEM visit 
frequency where animals with poor visitation to GEM sys-
tems had low spot measure CH4 accuracy. In comparison, the 
accuracy of the low-frequency visitation animals in the full 
test average CH4 accuracy was greater than in spot measure 
CH4 as the averaging approach essentially treated these ani-
mals as having the same volume of data as high GEM fre-
quency visitor animals. Additionally, spot measure evaluation 
of CH4 was the only approach investigated which facilitated 
time of day inclusion to address the diurnal pattern of CH4 
production. The diurnal pattern of CH4 has been well docu-
mented (Gao et al., 2011; Basarab et al., 2013; Brask et al., 
2015; Hammond et al., 2015; Bell et al., 2018) but, to the 
best of our knowledge, research does not currently exist on 
how best to consider or model the time of the day when the 
measurement happened.

Two validation methods were utilized in this study; AP-on-
EBV validation focuses on cross-validation, whereas EBV-
on-EBV validation focuses on stability metrics from parental 
average EBV from partial evaluations to full evaluation EBV. 
Level bias, by definition, is the difference in means of true 

breeding value and EBV whereas dispersion bias is defined 
as the slope of the regression of true breeding value on EBV 
(Legarra and Reverter, 2018). Ratio accuracy is a measure 
of the inverse increase in reliabilities from selected to whole 
(Macedo et al., 2020). In real-life datasets, the expectation of 
zero for level bias, one for dispersion bias, and ratio accuracy, 
are rarely achieved (Legarra and Reverter, 2018).

Due to some minor disagreement between validation met-
rics across methods, there is difficulty in interpreting the 
validation results to select the best trait. There were signif-
icant differences between spot measure CH4 and full test 
average CH4 in all validation metrics, except correlation in 
AP-on-EBV validation. As yet, the gold standard phenotype 
for comparison for validation from the GEM systems is 
unknown. While full test average CH4 had the highest her-
itability in this study, the overprediction suggested by vali-
dation alongside the heritability estimate suggests a creep of 
environmental effects into the genetic effects. The simpler 
statistical model used for the full test average CH4 has sev-
eral limitations; it does not allow for GEM system effects 
where animals may attend more than one GEM system, dif-
ferences in individual animal visitation patterns across test 
or variation in time of day of visit to the GEM system to 
be captured and it would need adaptation to a repeatability 
model where animals have multiple measurement periods 
throughout their life periods not evaluated in the current 
study. While consideration must also be given to multi-hour 
and multi-day averaged traits, the opportunities, and diffi-
culties of these must be analyzed. Multi-hour averaged traits 
present an opportunity to capture time of day within the 
contemporary group; however, contemporary group size is 
reduced as a result. Conventional genetic evaluations tend 
to omit small contemporary groups from genetic evalua-
tions, potentially resulting in biased sire EBV (Vasconcelos 
et al., 2008). Multi-day traits also provide the opportunity 
to utilize a higher heritability trait with larger contemporary 
groups; however, multi-day traits do not allow for time-of-
day inclusion in genetic evaluation—thus missing out on the 
ability to capture diurnal effect. In addition, the genetic cor-
relation reduction with the multi-day traits between CH4 
and DMI would reduce the effectiveness of DMI as a pre-
dictor trait.

Setting a lower limit of 10 d with GEM system records for 
inclusion resulted in only 1% of animals being lost from the 
analysis; however, animals with poor, infrequent, inconsistent 
visitation patterns pose a difficulty for full test average CH4 
evaluations and have been well documented (Waghorn et al., 
2016; Manafiazar et al., 2017). An analysis of the number 
of animals who have GEM system measurements in all six 
classes of time of day, as included in the spot measure CH4 
model, indicated that 99% of animals had visits in all six 
periods (0 to 3 a.m., 4 to 7 a.m., 8 to 11 a.m., 12 to 3 p.m., 
4 to 7 p.m., and 8 to 11 p.m.) across the test period; how-
ever importantly, the animals in this study were indoors and 
near the GEM system, at all times. Visitation frequency in 
grass-based studies has been much lower (1.6 visits/d; dairy 
heifers, United Kingdom [Hammond et al., 2015]). Poor visi-
tation patterns can result in biased measurements when aver-
aging across test periods, due to a lack of visitation during 
peaks of diurnal variation (Hammond et al., 2015). While 
the use of repeated records in genetic evaluations has been 
well documented in relation to milk traits for dairy cows 
(Swalve, 2000; Jensen, 2001) and behavioral traits (König et 
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al., 2006), little research is available on repeated record anal-
ysis of CH4 traits to date. As shown by the outliers in Fig-
ure 1., a recommendation of a minimum of 10 spot measure 
GEM system measurements could be applied to ensure an 
exact accuracy of 50% is achieved for phenotyped animals 
for spot measure CH4. While the phenotyping of additional 
animals (n = 12,818) is required for a calibration population 
to achieve 0.90 accuracy in genomic evaluations when uti-
lizing the spot measure CH4 trait instead of full test aver-
age CH4 trait, repeated record analysis in the spot measure 
CH4 trait allows for more precision around adjustments for 
temporary environmental effects (Jensen, 2001) which facil-
itates the capture of diurnal effects and inter-day effects for 
CH4. From a CH4 genetic evaluation perspective, the spot 
measures CH4 trait can be assessed using a repeated records 
model that incorporates spot measures, without the require-
ment for data averaging.

Conclusion
In this study, we have shown CH4, CO2, and DMI trait defi-
nitions to be moderately heritable traits and similar to esti-
mates of the same from other beef populations. Considerable 
genetic variation exists in all CH4 trait definitions, suggesting 
that breeding for reduced CH4 is possible. Strong genetic cor-
relations were observed between CH4 and DMI as well as 
between CO2 and DMI, suggesting that selection on GEM 
system measurements alone will have a direct impact on DMI 
and vice versa, which has a practical application in settings 
where either CH4 and CO2 or DMI may be recorded, but not 
all. This analysis in this study establishes methodology for 
developing EBV for CH4 traits. Despite the lack of a clear 
consensus across the validation metrics for nine alternative 
definitions of CH4 EBV in this study, for implementation of a 
national genetic evaluation, Irish Cattle Breeding Federation 
have initially opted for a spot measure of CH4 trait based on 
the validation results and ability to capture diurnal effect in 
the analysis.
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Supplementary data are available at Journal of Animal Science 
online.
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