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and yet there is still a Hopf bifurcation and so for a Class B
laser with sufficiently high γ the Hopf bifurcation must be (at
least approximately) independent of any RO phenomena. This
should also be clear physically. Since the undamping of the
ROs can be viewed as a resonance phenomenon, one needs
to have a frequency close to �RO to excite them. However,
at high injection strengths the locking range is large and so
the magnitude of the detuning at the locking boundary is also
large. Thus the frequency of the ROs is never reached and the
resonance cannot occur. Nonetheless, as explained earlier, this
route to locking must still involve a limit cycle of bounded
phase.

The Class A rate equations are obtained by adiabatically
eliminating the carrier equation from Eqs. (1) to (3) leading to
the following pair of equations:

Ṙ = P − R2

1 + 2R2
R + K cosφ, (7)

φ̇ = −� + α
P − R2

1 + 2R2
− K

R
sinφ. (8)

This system has previously been considered in Refs. [5,12] but
not for the features under consideration here. Note that in the
free-running Class A laser, perturbations from the steady state
decay exponentially and there is no intrinsic resonance that
may be excited. Thus, the frequency of the Hopf bifurcation
can only be associated with the injection parameters. By
finding the characteristic equation, we can find this frequency

�2
H = �2 − (1 + α2)N2(R), (9)

where N (R) ≡ P−R2

1+2R2 and R2 is evaluated at the Hopf point.
N (R) is bounded with the same limits as N in the Class B case,
and so as the injection strength is increased the detuning term
becomes ever more prominent and for high injection strengths
we recover the same result as for the Class B system, namely,
that �2

H ≈ �2.
In fact, in the Class A system the value of R2 is fixed at

a Hopf bifurcation and is independent of the detuning and
injection strength and dependent only on P and must satisfy

R4 + R2 − P/2 = 0. (10)

To illustrate a specific example let us take α = 2 and P = 0.5.
We thus have R2 ≈ 0.207 and

�2
H = �2 − 0.214. (11)

This shows that for P = 0.5 we can only have a Hopf
bifurcation for |�| �

√
0.214. It also shows that the value

of the detuning is crucial for determining the Hopf frequency
at all injection strengths in stark contrast to the Class B system.

Figure 3 shows a locked to unlocked transition through
a Hopf bifurcation. From top to bottom we see the phase
evolution from (a) phase locked, through (b) unlocked with
bounded phase to (c) unlocked with unbounded phase. At this
injection level the angular frequency of the cycle created in
the Hopf bifurcation is approximately �H = 4.79 and occurs
at a detuning of approximately � = 4.81 (both in units of
radians per inverse photon lifetime), and so we have a close
correspondence between the two. This must also hold for a
Class B laser undergoing sufficiently high injection levels,
in agreement with Eq. (4). Note that there is no bifurcation
associated with the unbounding of the phase. An experimental
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FIG. 3. (Color online) Numerical simulation of the evolution of
the phase in a transition from phase locked to unlocked for a Class
A laser. (a) Fixed phase corresponding to phase-locked behavior;
(b) unlocked behavior with a limit cycle of a bounded phase; and
(c) unlocked behavior with a limit cycle of an unbounded phase. The
parameters were K = 2, α = 2, P = 0.5, and � = 0, 4.82, and 10,
respectively.

transition to locking via such a Hopf bifurcation for a highly
damped quantum dot device is shown in the next section.

V. EXPERIMENTAL QUANTUM DOT PHASORS

To experimentally probe a highly damped device we
used a single mode distributed feedback (DFB) quantum
dot laser with an InAs/InGaAs active region emitting at
approximately 1.3 μm of similar construction to those used
in Ref. [24]. These devices have a much higher RO damping
than conventional semiconductor lasers [25–27]. This leads
to several important differences when compared to quantum
well and bulk lasers including a greatly increased tolerance to
external optical feedback [26] and mutual coupling [24] and
similarities with Class A devices when optically injected [2].
The rate equation model for quantum dot lasers should in
principle be different to that used for quantum well based
devices. However, our intention is to explain the observations
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FIG. 4. (Color online) Experimental phasors for the transition
from locked to unlocked behavior for a quantum dot device through a
Hopf bifurcation. The device was operated at approximately 1.2 times
the threshold current. The ratio of the intensity of the master laser
reaching the slave to the intensity of the slave when free running
was approximately 0.7. (a) Phase-locked behavior at a detuning
of approximately −3 GHz; (b) unlocked behavior with a bounded
phase limit cycle at a detuning of approximately 1.8 GHz; and
(c) unlocked behavior with an unbounded phase limit cycle at a
detuning of approximately 6 GHz.

physically, and so we make use of the noted similarity between
optically injected (InAs/InGaAs) quantum dot devices and
optically injected Class A devices and content ourselves with
qualitative comparisons of the numerical simulations and the
experimental measurements.

Figure 4 shows the evolution of the phasor of a quantum dot
laser over a transition from (a) phase locked to (b) unlocked
with a bounded phase and finally to (c) unlocked with an un-
bounded phase, the same regimes as in the Class A numerical
simulations in Fig. 3. The injection level is quite high here;
the intensity of the light from the master laser reaching the
slave was approximately 0.7 times the free-running intensity of
the slave. In particular, this is much higher than the values
where the locking boundaries are given by saddle-node
bifurcations for both signs of the detuning; the locking for
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FIG. 5. (Color online) Experimental phases corresponding to the
phasors in Fig. 4.

positive detuning was via Hopf for injection strengths of
approximately 0.07 and greater. The bounded limit cycle is
clear in Fig. 4(b). In contrast to the weak injection case
the transition from bounded phase to unbounded phase does
not involve any intermediate regime or any corresponding
bifurcation, as already mentioned. Rather, the cycle of Fig. 4(b)
simply migrates and grows in size continuously to become that
of Fig. 4(c). Figure 5 shows the corresponding plots of the
time series of the phase of the slave laser displaying excellent
qualitative agreement with the numerical evolutions shown in
Fig. 3.

Comparisons of the Hopf frequency and the detuning at
various injection strengths show a good qualitative agreement
with Eq. (9). The frequency of the cycle born in the Hopf
bifurcation at an injection strength of 0.7 was approximately
2.8 GHz and occurred at a detuning of approximately 1.8 GHz.
While these are different, they are sufficiently close that
the detuning must provide a significant contribution to the
Hopf frequency. At the lowest injection strength where the
(positive detuning) locking boundary was of Hopf form—
approximately 0.07—the frequency of the cycle created was
1.8 GHz while the detuning was approximately 0.7 GHz.
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Again, these are sufficiently close that the detuning is a
significant contribution. By moving to high injection levels
the two can become almost equal. When the intensity of the
master laser reaching the slave was approximately 2.2 times
the free-running intensity of the slave, the frequency of the
cycle created in the Hopf bifurcation was 6.7 GHz while
the detuning was approximately 6.6 GHz, in extremely close
correspondence. Thus the detuning is always a significant
factor in the Hopf frequency and increasingly so as the
injection strength increases, in excellent qualitative agreement
with Eq. (9) and in great contrast to the Class B case where
it is sometimes merely a small perturbation. This is yet
another feature of the optically injected quantum dot system
qualitatively similar to the Class A system [2].

VI. CONCLUSIONS

We have shown that the presence of an unlocked solution
of bounded phase exists generically in optically injected
lasers. The phenomenon is a direct result of the Hopf
bifurcation locking mechanism and need not result from any
intrinsic frequency in the laser. Theoretical considerations
and simulations of rate equation models of both Class B
and Class A lasers show two particular cases. For a weakly
damped laser there can be a bounded cycle resulting from

an excitation of the RO resonance in the system, while for a
highly damped or Class A device there is no such excitation,
yet a cycle of bounded phase must still arise. We derived
an expression for the frequency of the Hopf bifurcation
in optically injected Class A lasers and showed that the
detuning must always play a significant role in the value of
this frequency in contrast to the corresponding expression
for Class B lasers. An experimental technique to directly
resolve the phase of the slave laser in the frame of the master
confirmed the existence of the phenomenon for both weakly
damped devices and highly damped devices and were in
excellent agreement with simulations. The phasor in a chaotic
regime for the weakly damped laser displayed a combination
of bounded and unbounded features allowing for a distinctive
view of the regime suggesting that this type of measurement
may be useful in further studies of chaos in the system.
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