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Figure 2. Traits included in the Replacement index and their respective emphasis. Reference: 

[22] 

 

Carcass grading systems 

Beef carcasses come in many different shapes and sizes as determined by factors not limited 

to age, breed, sex, and nutrition. Naturally, the size of a carcass will influence the yield of 

saleable meat from that carcass which in turn will dictate the profit that can be achieved from 

each carcass. Therefore processors, or abattoirs, have developed grading systems that 

determine the value of a beef carcass per unit of carcass weight. The grade achieved by a 

carcass will form the basis for the transaction between the farmer and the abattoir. 

The grading system used by abattoirs was standardised in the EU in 1981 to allow trade across 

the common market. Under this standardised grading system, still in use today, carcasses are 

visually graded along the EUROP classification grid for both conformation and fat. In this 

system each letter of ‘EUROP’ represents a conformation class respectively. Furthermore, 

each letter is subdivided into 3 subclasses (‘+’, ‘=’, and ‘-‘) so that the best conformed 

carcasses are graded as ‘E+’ down to the worst conformed carcasses being graded as ‘P-’, thus  

there are 15 possible conformation scores. For fat grades the numbers 1 to 5 represent the 

classes and each class is similarly subdivided in 3 categories, also giving 15 possible fat scores. 
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Carcasses with the highest fat covering will therefore have a fat score of ‘5+’ and carcasses 

with the least amount of fat covering are graded as ‘1-’. Therefore a carcass can receive 1 of 

225 (15 * 15) possible combinations of conformation and fat scores. Up until the early 2000’s, 

grading along the EUROP system was carried out by trained human graders.  

The grading of beef carcasses has always been a contentious issue between farmers and 

abattoirs as any error in grading can result in economic losses. By the early 2000’s, digital 

imaging technology had progressed significantly and so, it was felt that a more objective grade 

could be arrived at using the technology available. Since then, some studies have shown that 

human graders are in fact prone to bias [1-3]. In 2003, changes to the EU legislation allowed 

abattoirs to move to an automated EUROP grading system utilising video image analysis (VIA), 

and in 2004 Ireland became the first country to have VIA systems authorised [4].  

 

 

Figure 3. Example payment grid from an Irish abattoir (Slaney Meats, Wexford).  

 

Although the automated grading system has had some upgrades in recent years; moving from 

an analogue camera and fluorescent lighting system to a digital camera and LED lighting [23], 

the fundamental grading process remains mostly unchanged. The system works whereby 

digital images of the right half of the animal carcass are captured within minutes of slaughter. 

The images are ingested and processed further by specialised, proprietary software which 

measure certain carcass dimensions and contours. These measurements feed into 

classification based algorithms to predict the EUROP conformation and fat scores. Abattoirs 

subsequently value the carcass based on these classifications. Figure 3 displays an example 
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payment grid from an Irish abattoir. The base price per kilogram is paid for an animal in the 

relevant classes e.g. €3.90/kg carcass weight. Prices paid per kilogram for other classes are 

adjusted by the number of cents indicated in that particular class. Extreme conformation and 

fat scores are not included as these are seldomly encountered. 

 

Meat yield predictions 

The amount of saleable meat present on a carcass is the primary factor influencing it’s 

monetary value. However, this yield is generally not measurable for a number of weeks until 

the carcass is processed after a period of hanging. Furthermore, the collection of meat yields 

for individual carcass cuts is an expensive and time-consuming process, and so, yields are not 

routinely captured. Therefore, a mechanism that could provide a fast and accurate meat yield 

prediction would be very useful as an earlier, and arguably more exact versus the current 

EUROP classification system, indication of a carcass’s value. This may also open the possibility 

of breeding for larger yields of saleable meat, on a total saleable meat level or individual cut 

yield level, where breeding values could be calculated for meat yield. Work by Judge et al. in 

2019 [24], showed that heritability for 14 different cut yields had a high mean heritability of 

0.48 allowing for genetic gain to be achieved if included in breeding programmes. 

 

Predictions from phenotypic data 

In practice, a trait is anything that can be observed on an individual. Economically important 

traits are recorded for animal breeding programmes and a phenotype is the measure of that 

trait for any given individual animal. Some important phenotypes that are regularly recorded 

in beef animals in Ireland are calving intervals, weaning weights, and cow liveweights amongst 

others.  

Over the last few decades many authors have attempted to predict total saleable meat, or 

individual cut yields, from a range of different phenotypes [5-9]. In 2008, Drennan et al. [5] 

investigated the relationship of muscular and skeletal scores taken on live animals along with 

carcass conformation and fat scores from the EUROP classification system with carcass 

composition and value. Muscular scores assessed pre-slaughter were shown to be positively 

correlated with carcass meat proportion but the values ranged from 0.39 to 0.69 depending 
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on the individual assessor, type of assessment and sex of the animal. Similarly, a positive 

correlation between pre-slaughter muscular scores and the proportion of high-value cuts in 

the animal carcass were demonstrated but were also highly variable ranging from 0.11 to 

0.73. This was also the case for carcass value with correlations ranging from 0.30 to 0.70. 

When the authors investigated the effectiveness of EUROP conformation and fat scores in 

predicting carcass meat proportion, proportion of high-value cuts in the carcass and overall 

carcass value through linear regression, coefficient of determination (R2) values of 0.70, 0.29, 

and 0.59 were achieved for bulls and 0.55, 0.34, and 0.51 for heifers respectively. Although 

the phenotypes were shown to have some predictive ability, given the range of effectiveness 

of the models across different animal types, it is also evident that these models were 

somewhat variable. 

Other authors have also shown similar results. Conroy et al. [6] investigated the relationship 

of live animal muscular and skeletal scores and carcass classification scores also, with the 

addition of pre-slaughter ultrasound animal measurements, to carcass composition and value 

in steers. Similarly to Drennan et al. [5] live muscular scores had positive correlations with 

total meat proportion of the carcass but ranged from 0.49 to 0.64 depending on the scoring 

system. Correlations with high value cuts were also positive but at a lower level with a range 

of 0.20 to 0.44. Muscle depth as measured by ultrasound scanning pre-slaughter had a 

statistically significant correlation with total meat proportion of the carcass at 0.52. High value 

cuts and ultrasound scanned muscle depth had a correlation of 0.31. The authors also 

demonstrated a correlation of 0.66 between carcass conformation score and total meat 

proportion of the carcass, and 0.29 between carcass conformation score and high value cuts. 

When using the live animal muscular and skeletal scores, carcass classification scores and pre-

slaughter ultrasound animal measurements combined in regression algorithms, the authors 

report R2 values equal to 0.53 for meat proportion of the carcass, 0.37 for proportion of high 

value cuts and 0.58 for carcass value.  

The same authors followed up this study in steers with a similar study in bulls [7]. However, 

the predictability of the same traits, meat proportion of the carcass, proportion of high value 

cuts and carcass value, was higher in bulls in this study with R2 of 0.72, 0.42, and 0.72. In 

general bulls reared for beef production are more uniform in weight and conformation at 

slaughter mainly as they have received high concentrate diets for extended periods of their 
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lives and are also slaughtered at younger ages. Using carcass conformation scores alone, 

Conroy et al. [8] achieved a R2 of 0.73 for carcass meat proportion in a dataset containing 

bulls, steers and heifers and also a range of breeds.  

Finally, in 2011, Pabiou et al. [9] presented predictions with R2 values of 0.97 and 0.85 for 

total meat weight and high value cut yield in steers using cold carcass weight and EUROP 

conformation and fat scores. The same study reported R2 values of 0.80 and 0.71 for the same 

traits in heifers.  

Although these previous studies have developed models with high levels of predictability, the 

results are variable across studies. Furthermore, all studies reviewed here were based on 

smaller datasets of animals with the largest using 662 cattle in total. Given that 1.9 million 

cattle were slaughtered for meat in Ireland last year [18], it is desirable that these models be 

shown to be effective in vastly larger test sets. 

 

Can genomics be used to predict meat yield? 

In 2001, Meuwissen et al. [25] proposed the use of genomic selection (GS) to increase the 

rate of genetic gain in animals. This gain is brought about by higher accuracies of predicted 

genetic merit for young animals. The generation interval is the average age of the parents at 

birth of their offspring that in their turn will produce the next generation of breeding animals. 

Identifying elite animals at a younger age will typically lead to shorter generation intervals 

through higher contributions from young genetically superior bulls and heifers. Also, GS can 

be used to test larger groups of potentially elite animals than traditional progeny testing 

structures leading to increased selection intensity. The main reason that elite animals can be 

identified at younger ages through GS is the fact that no phenotypic data is required to 

calculate a genomic breeding value (GBV).  

The principle works whereby a large group of animals with vast amounts of high quality 

phenotypic data available on the desired trait are genotyped on a single nucleotide 

polymorphism (SNP) chip. These informative genotyped animals are known as the reference 

population. By comparing the allele present at each SNP with the trait phenotypic value for 

all animals in the reference population, the contribution of each SNP to the trait can be 

calculated. Once these SNP effects are calculated from the reference population, a newly 
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genotyped animal’s GBV can be calculated for the trait by applying the SNP effects to each 

SNP allele present in the new animal genotype. In this way no phenotypic data is required and 

therefore the animal can be genotyped at a very young age. However, GS can also be applied 

to phenotypes that are difficult or expensive to measure. This principle has been proposed 

for difficult to measure traits in cattle such as methane production [26, 27], dry matter intake 

[28], reproductive disorders [29], heat stress [30, 31], health traits [32, 33], meat eating 

quality [34, 35] and also meat yield [36, 37] amongst others [38, 39]. 

In 2017, Mehrban et al. [36] evaluated the accuracies of a number of different algorithms 

used to calculate GBVs in Korean Hanwoo beef cattle. One of the traits investigated as part of 

that study was eye muscle area of the carcass. The eye muscle area is located at the 

longissimus dorsi muscle between the 12 and 13th rib. It is generally measured by either live 

animal ultrasound scanning or direct measurement of carcasses in the abattoir. As this is 

impractical and/or expensive to measure for all animals being slaughtered, Mehrban et al. 

[36] was able to demonstrate that GBVs could be calculated for this trait. In this way, many 

breeding evaluation centres calculate GBVs for meat yields of different cuts. In Australia, the 

Angus breed society, Angus Australia, calculate and publish GBVs for eye muscle area and 

retail beef yield [40]. Likewise the British Limousin society calculate and publish GBVs for 

yields of 9 different cuts [41]. These are 5th rib hindquarter, 8th rib forequarter, fillet, flank, 

knuckle, silverside, striploin, topside and rump. Heritability values for these yield traits have 

been demonstrated that would enable genetic gain to be achieved when included in breeding 

programmes [41]. However, the GBVs published by the British Limousin society are actually 

based on VIA predictions for these yields rather than actual measurements. In this way, 

genomics and carcass cut predictions can complement each other. 

Genomic breeding values can be an integral part of an animal breeding programme that 

attempts to increase yields of saleable meat and also high value cuts in future generations of 

animals. For carcass cut meat yields, this may work whereby progeny of influential artificial 

insemination (AI) sires are genotyped and subsequently slaughtered after fattening. During 

carcass processing the yields for carcass cuts will be weighed and recorded. These slaughtered 

animals then become the reference population in order to calculate SNP effects for larger 

yields of valuable carcass cuts. A GBV with relatively high accuracy can then be calculated for 

living relatives. However, for this method to work there are genotyping costs to consider and 
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also, carcass cut yields will have to be manually captured for any reference population 

animals. Currently in Ireland, GBV’s are not calculated for carcass cut weights. If an accurate 

prediction of carcass cut weights could be made without manually weighing the cuts, one of 

the main impediments for carcass cut GBV’s in Ireland would be removed. 

 

Predicting meat yield from images 

As mentioned in the Carcass grading systems section above, currently carcass conformation 

and fat scores are automatically predicted by VIA software in Ireland and many other 

European countries. For this system, images of the right half of the carcass are analysed by 

proprietary software products to deliver prediction scores. In one of the first published 

studies of its kind, Pabiou et al. [9] partnered with a commercial company (E+V Technology 

Germany; http://www.eplusv.de/) that specializes in beef carcass predictions and 

demonstrated the use of VIA carcass variables for the prediction of four different grouped 

meat yields using stepwise regression. The groups were based on retail value and were Low 

Value Cuts (LVC), Medium Value Cuts (MVC), High Value Cuts (HVC), and Very High Value Cuts 

(VHVC). Total saleable meat weight was also predicted amongst others. The VIA carcass 

variables were 428 measurements describing carcass dimensions, carcass contour and carcass 

colour. In the study, separate models were created for different animal types; steers (n=346), 

bulls (n=74), and heifers (n=281). Predictive ability of the resulting models was very high.  A 

model using carcass weight and the 428 VIA variables in steers reported R2 values of 0.97 for 

total saleable meat, 0.92 for LVC, 0.86 for MVC, 0.93 for HVC, and 0.84 for VHVC. The 

equivalent model in heifers achieved R2 values of 0.84 for total saleable meat, 0.65 for LVC, 

0.70 for MVC, 0.85 for HVC, and 0.72 for VHVC. Although, the predictive ability of the heifer 

model was also high, some variation exists between the performance of the steers model 

versus the heifers model. Furthermore, the numbers of animals used in the study is somewhat 

limited with a validation dataset of 114 steers and 92 heifers. A test on a larger sample of 

animals would be worthwhile. 

A number of different companies offer commercial systems to classify beef and sheep 

carcasses along the EUROP scale. However, there is a lack of scientific literature regarding the 

development and testing of these systems, presumably as they deal with commercially 

sensitive information. All Irish abattoirs use the VBS2000 VIA system developed by E+V 
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Technology Germany [23]. Although the system employed only gives carcass conformation 

and fat scores in Ireland, it would appear that it is possible for the system to also predict the 

meat yield of several different cuts. In 2017, Moore et al. [42] presented genetic parameters 

for fillet, striploin, topside, knuckle, silverside and rump yields predicted from VIA commercial 

software. The processed cuts derived from a sheep carcass are different than those derived 

from a beef carcass. However, 5 different sheep cut yields predicted from VIA commercial 

software were evaluated by Rius-Vilarrasa et al. in 2009 [43]. In that study VIA predictions of 

sheep cuts were shown to be very accurate with R2 values ranging from 0.86 to 0.97. However, 

once again, the study used a small sample size with 443 commercial lambs under 12 months 

of age comprising the entire dataset. When a smaller group of animals is investigated, it is 

more likely that a uniform group of animals is utilized and therefore variation in yields is 

smaller. Both of these studies, Moore et al. [42] and Rius-Vilarrasa et al. [43], evaluated the 

effectiveness of the predictions but neither dealt with how the predictions themselves have 

been derived.  

As the VIA commercial systems have been present for a number of decades without 

considerable modifications, it is assumed that the algorithms employed to derive meat yield 

predictions are regression based and do not employ Deep Learning (DL). Vast improvements 

have been made in the performance and application of deep convolutional neural networks 

to image data in the last decade [11]. However, currently only one study has been found in 

the scientific literature applying DL to carcass images. Goncalves et al. [12] present the use of 

DL models to successfully segment the carcass from all other elements also present in a digital 

image such as the background or abattoir workers. No current literature can be found 

investigating the performance of DL models trained on carcass images, to predict EUROP 

classification or meat yield. 
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Materials and Methods 

The data used in the present study were obtained from a pre-existing database managed by 

the Irish Cattle Breeding Federation (ICBF). Therefore, it was not necessary to obtain animal 

care and use committee approval in advance of conducting this study. 

Data from Irish cattle slaughtered for meat between 2011 to 2018 was available from a range 

of sources: carcass images and structured data captured at different stages throughout the 

animal’s lifetime were collated along with target variables of meat yields for different 

processed cuts of the carcass. Each respective dataset is explained in more detail below. Three 

different approaches to predict carcass cut yields were undertaken, largely determined by the 

suitability of the data type to a specific machine learning algorithm.  

 

Meat yields 

The yield of specific meat cuts in kilograms were recorded during routine carcass processing 

in an Irish commercial abattoir (Slaney Meats, Co. Wexford, Ireland). As such, the dataset 

contained steers, heifers, cows and young bulls. Also the vast majority of animals were 

commercial crossbred animals with varying proportions of beef and dairy breeds. The cuts 

recorded and used in this study were the Silverside, Topside, Knuckle, Rump, Striploin, Fillet, 

and Cube-roll. The approximate location of these cuts on a carcass are displayed in Figure 4 

alongside some other industry cuts. Only cut data from animals that had a yield for each of 

the 7 cuts examined, within 3 standard deviations of the mean, matched to an animal record 

present in the Irish Cattle Breeding Federation (ICBF) database and also matched to a carcass 

image, were included in the study. As a relatively large number of cut yields per animal were 

available as target variables it was decided that cuts would be grouped together into Grilling 

cuts and Roasting cuts. Roasting cuts were the combined yield of silverside, topside, knuckle 

and rump. Grilling cuts were the combined yield of striploin, fillet and cube-roll. These 

groupings are similar to a subset of those used in Pabiou et al. [9] and in general, represent 

the highest value cuts of the carcass. The final clean dataset contained 54,598 Grilling yields 

and 69,246 Roasting yields.  
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Figure 4. Approximate location of the meat cut yields. Only cuts 1 – 5 were included in this 

study. Cuts 1 and 2 were summed to create the Roasting group; cuts 3, 4, and 5 were summed 

to create the Grilling group. 

 

Images 

Two photographs of the carcasses were taken immediately after slaughter: a standard two-

dimensional image (2D) and a structured light image (3D) (figure 5). The structured light image 

is created by a lighting system projecting specific shading patterns onto the carcass. The 

majority of abattoirs in Ireland routinely capture carcass images for the prediction of a fat 

score and a conformation score; these predicted scores, along with carcass weight, dictate 

the carcass price paid to the farmer. The video image analysis (VIA) system used across Irish 

abattoirs is the VBS2000 (E+V GmbH, Germany) and prediction of carcass conformation and 

carcass fat on the EUROP scale uses E+V proprietary VIA software. In this study, the 2D and 

3D images collected in abattoirs are used to train novel models but the propriety software 

was not. 
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Figure 5. Example 2D image on left, and associated 3D image on right. 

 

A significant undertaking of this study was matching the carcass images to records in the ICBF 

database as the naming convention used for images was different to the predominant animal 

ID used in the ICBF database. Furthermore, the ICBF receives images from all abattoirs in the 

country but only receives meat yields from the one abattoir mentioned above. At the time of 

processing there were approximately 7 million images from 3.5 million animals stored on ICBF 

servers in an ad hoc manner. Of these, approximately 70,000 were required for this study. 

SQL scripts were developed in order to match the images to the meat yield records and Unix 

scripts were developed in order to extract these matched images to clean directories. The 

required images were subsequently transferred to a cloud computing Virtual Machine (VM) 

created specifically for this study in order to gain access to the required infrastructure for DL 

models i.e. a GPU. Images were separated into 2D and 3D image directories and then 

randomly assigned into Training, Validation and Test sets (for DL models) ensuring that both 

2D and 3D sets were the exact same on an animal level. The directory structure was set up to 

match these different datasets and images were swapped between directories as required 
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for cross validation (discussed below). The python scripts developed for approach 3 (also 

discussed below) were also developed on the VM and applied to the images in their respective 

directories. Once these measurements were collected from the images there was no 

constraint with directory structure for any cross validation splitting in approach 3. 

 

Structured data 

Meat yields recorded in the abattoir were matched to animal records in the ICBF database 

and features deemed informative for this study were extracted (Table 1). Categorical data 

was one-hot encoded into multiple features and joined to continuous features. As many of 

the continuous features, or independent variables, used in this study were on different scales, 

it was important that these features were standardised to allow all features the opportunity 

to contribute equally to the respective ML algorithm. Therefore, continuous features were 

standardised by subtracting the mean and dividing by the standard deviation as: 

𝑧 =  
(𝑥 −  𝜇)

𝑠
 

where 𝑧 is the standardised value, 𝑥 is the original feature value, 𝜇 is the mean and 𝑠 is the 

standard deviation. After standardisation, the new mean of the feature will be 0 with a 

standard deviation of 1. Standardisation is often applied to normally distributed data, as is 

the case in this study, and has less of an effect on outliers than normalisation due to the 

absence of bounding ranges. 
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Table 1. Features used in ML models derived from structured data 

Feature Description 

Carcass weight Weight of the animal carcass in kilograms immediately after 
slaughter 

Age at slaughter Age of the animal at slaughter in days 

Breed Breed percentage breakdown 

Purebred Whether the animal was purebred or not 

Animal purpose Purpose of the animal based on predominate breed. Dairy vs Beef 

Fat score Predicted fat score. 1 least – 15 most 

Conformation 
score 

Predicted conformation score. 1 least – 15 most 

Month of Slaughter Month of year that the animal was slaughtered in 

Animal type Whether the animal was a heifer, steer, cow, or young bull 

 

 

Data preparation 

To investigate the predictive performance of models created in this study, two distinct 

datasets were created: a training set and a hold-out test set. The test set was approximately 

10% of the total dataset and was chosen randomly. Records present in the hold-out test set 

were never used as training records and therefore a less biased estimate of how the models 

generalize to new data was obtained. Furthermore, the test set facilitated a fairer comparison 

between the different models and approaches investigated. However, results obtained from 

a hold-out test set are sensitive to the partitioning of the data. Therefore, for all models 

created except DL models, k-fold cross validation [44] was carried out whereby the training 

set only (the hold-out test set was not used for cross validation) was randomly split into 10 

folds without replacement. For each iteration of cross validation, 1 fold was used as a 

validation set and the remaining 9 folds were used as a training set. The proportion of records 

used as validation data in each fold was therefore 10%. In this way, k-fold cross validation 

allowed for a more robust technique of performance estimation, ensuring that model results 

were repeatable across different folds. Furthermore, hyperparameter optimisation was 

employed during k-fold cross validation. K-fold cross validation, and the calculation of average 

performance is presented in Figure 6. As both the Grilling and Roasting yields were normally 
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distributed (discussed in more detail in the Results section below), and the folds for cross 

validation were randomly chosen, Mean was chosen as the metric to investigate for cross 

validation. The cross validation results (presented in the Results section), also justify this 

decision. 

 

 

Figure 6. K-fold cross validation and capture of average performance metrics. Validation set 

is indicated in grey. 𝐸𝑖 is the appropriate performance metric for the validation set of the 𝑖𝑡ℎ 

fold. 

 

K-fold cross validation is not routinely implemented for Deep Learning models due to the 

significantly longer amount of time to train. Alternatively, hold-out cross validation is 

commonly employed. However, in order to obtain a measure of the repeatability and 

variability of the DL models predictive performance we have performed hold-out cross 

validation 3 separate times. This was carried out by randomly selecting 10% of the training 

data to serve as a validation set during the training epochs. It was ensured that no record 

could be present in a validation set in more than 1 training phase.  
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Measures of accuracy 

The coefficient of determination (R2) was used as the main determinant of a model’s 

predictive ability as it represents the proportion of the variance for a dependent variable 

that's explained by the independent variables. The range of the R2 value is -1 to 1 and the 

higher the value, the better the performance of the model. Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) were also calculated. The MSE measures the average of the sum 

of squared error whereby the error is the difference between the predicted values and the 

actual values. Therefore the lower the MSE, the better the performance of the model. 

Likewise, the lower the MAE the better the performance of the model. The MAE is a similar 

metric to the MSE but the sum of the absolute error is used to calculate the mean. The MAE 

can be useful as the unit is the same as that of the target variable. i.e. kilograms in this case. 

These are 3 of the most commonly used metrics for evaluating the performance of a 

regression model and therefore were chosen for this study. These metrics were calculated on 

each individual cross validation fold in order to calculate mean model performance for cross 

validation, and also on the hold-out test set as a final measure of accuracy. 

R2 was calculated as: 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

where 𝑦̂𝑖 is the predicted value of the 𝑖-th sample, 𝑦𝑖 is the corresponding true value, 𝑛 is the 

total number of samples and 𝑦̅ is the mean of the true values. 

MSE was calculated as: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 

where 𝑦̂𝑖 is the predicted value of the 𝑖-th sample, 𝑦𝑖 is the corresponding true value and 𝑛 is 

the total number of samples. 

MAE was calculated as: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
 

where 𝑦̂𝑖 is the predicted value of the 𝑖-th sample, 𝑦𝑖 is the corresponding true value and 𝑛 is 

the total number of samples. 
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Models 

Three different approaches were examined for predicting Grilling and Roasting cuts. Briefly, 

the 3 approaches were: (1) structured data as input features for a range of machine learning 

regression algorithms, (2) carcass images fed into a DL neural network adapted to predict a 

regression value rather than classification, and (3) measuring 346 carcass dimensions from 

the carcass image and concatenating these measurements with the structured data available 

to use as features in a range of ML algorithms. These approaches are explained in more detail 

below, and important sections of Python code developed for the approaches are presented 

in the Appendix. 

 

Approach 1 

The first approach to predict Grilling and Roasting cuts used the structured data, explained 

above, as input features in 13 regression algorithms (listed in Table 2), deployed and trained 

  

Table 2. Regression algorithms initially investigated with default hyperparameters. 

Algorithm 

Linear Regression 

Lasso Regression (Linear Regression with L1 regularization) 

Ridge Regression (Linear Regression with L2 regularization) 

Stochastic Gradient Descent Regression 

Elastic Net regression (Linear Regression with combined L1 and L2 regularization) 

Least Angle Regression 

Bayesian Ridge Regression 

K-nearest Neighbours Regression 

Decision Tree Regression 

Epsilon-Support Vector Regression 

Random Forest Regression 

Gradient Boosting Regression 

AdaBoost Regression 
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through the Python machine learning library scikit-learn [45]. Initially, default 

hyperparameters were used for testing 13 algorithms on 1 random validation fold of the 

training data. The 3 best performing regression models identified with default 

hyperparameters were subsequently optimised using grid search cross validation with 10 

folds. Following hyperparameter optimisation, Gradient Boosting Regression reported the 

highest R2 metric and lowest MSE and MAE for both Grilling and Roasting cut predictions. The 

optimum hyperparameters for Grilling cuts was a learning rate of 0.1, a Huber loss function, 

a max depth of 3 and 200 estimators. For Roasting cuts, the same hyperparameters achieved 

the best prediction during cross validation with the noteworthy exception of 600 estimators 

performing best. The models with optimum hyperparameters were then tested on the hold-

out test set for a direct comparison to other approaches investigated. Feature importance 

values were calculated as the normalized total reduction of the Friedman MSE (Mean Squared 

Error with improvement score by Friedman) brought about by each respective feature. This 

is also known as the Gini importance. 

The idea for Gradient Boosting originated in 1997 when Leo Breiman, most well-known for 

his efforts in developing the Random Forest algorithm [46], observed that boosting can be 

interpreted as an optimization algorithm on a suitable cost function [47]. Further work by 

Jerome Friedman in the early 2000’s developed Gradient Boosting Regression as iterative 

functional gradient descent algorithms [48, 49]. Boosting is based on the principle of 

combining a number of weak estimators to form a strong estimator. It is an iterative process 

where each subsequent estimator focuses on the records on which the previous estimator 

performed worst [50]. In the case of Gradient Boosting Regression, the model which 

performed best in approach 1 of this study, the weak estimators are decision tree regressors 

making this algorithm somewhat similar to Random Forest Regression. However, for Gradient 

Boosting Regression, the decision tree depth is limited in order to define the level of variable 

interactions that can be captured by each respective estimator. Furthermore, the process of 

creating each estimator is sequential and interconnected whereby the creation of one 

estimator influences the creation of the next estimator by applying weights to each training 

instance [50]. More specifically the errors by the first estimator influence the second 

estimators’ coefficients and so on. New estimators are created to correct the prediction 

residual errors from the existing sequence of estimators. With this approach the model has a 
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tendency to overfit the training data. Therefore a technique employed to reduce overfitting 

is to apply a weighting factor for the corrections by new estimators as they are added to the 

model. This weighting factor is the learning rate, sometimes referred to as the shrinkage 

factor as it shrinks the contribution of each new estimator that is added to the existing 

sequence of estimators. This is not the case for Random Forest Regression where each 

estimator is created and trained independently. Gradient Boosting Regression was calculated 

for the prediction 𝑦𝑖̂ as: 

𝑦̂𝑖 =  𝐹𝑀(𝑥𝑖) =  ∑ ℎ𝑚

𝑀

𝑚=1

(𝑥𝑖) 

where 𝑦̂𝑖 is the predicted value of the 𝑖-th sample, 𝑀 is the number of estimators, 𝑥𝑖  is the 

input data for the 𝑖-th sample, and ℎ𝑚 are the weak estimators. 𝐹𝑚(𝑥) is built as: 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) +  ℎ𝑚(𝑥) 

where the newly added estimator ℎ𝑚 is fitted in order to minimise the sum of losses 𝐿𝑚 from 

the ensemble up to this point, 𝐹𝑚−1: 

ℎ𝑚 =  arg min ℎ 𝐿𝑚 = arg min ℎ ∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)) 

where 𝑙(𝑦𝑖, 𝐹(𝑥𝑖)) is the Huber loss function in the case of both Grilling and Roasting yield 

predictions and is defined as: 

𝑙(𝑦𝑖 , 𝐹(𝑥𝑖)) =  {

1

2
(𝑦𝑖 −  𝑓(𝑥𝑖))

2
 𝑓𝑜𝑟 |𝑦𝑖 −  𝑓(𝑥𝑖)|  ≤  𝛿,

𝛿|𝑦𝑖 −  𝑓(𝑥𝑖)| −  
1

2
𝛿2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

where 𝛿 was equal to 1.35. 

 

Approach 2 

Deep Learning was used for this approach, or more specifically, a deep Convolutional Neural 

Network (CNN) was trained on the carcass images with carcass cut yields as the target 

variable. In total 4 CNN’s were optimised and trained; a CNN trained to predict Grilling yield 

from 2D images, a CNN trained to predict Grilling yield from 3D images, a CNN trained to 
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predict Roasting yield from 2D images, and a CNN trained to predict Roasting yield from 3D 

images. Although, CNN’s trained with randomly initialised weights were investigated, CNN’s 

with pre-trained weights and optimised during subsequent training on the image dataset for 

this particular study performed best. This technique is known as transfer learning and the 

process as used here is described in more detail further below. Convolutional Neural 

Network’s differ from traditional neural networks by utilising a number of techniques to 

handle image pixel values as input data (such as convolutional kernels and pooling amongst 

others), yet some of the fundamental processes in training a CNN are very similar to a 

traditional neural network. Two such processes are forward pass and back propagation, and 

therefore these are dealt with in more detail. 

 

Neural Networks 

A neural network (NN), or a multi-layer perceptron, is made up of many connected layers with 

each layer made up of many neurons or nodes [51]. In order for the NN to make a prediction, 

a forward pass must occur. A matrix implementation of a forward pass is described here. 

Output from the first layer of neurons in the NN is calculated in 2 steps as: 

𝐴1 =  𝑋𝑤1 +  𝑏1 

𝐻1 =  𝑎𝑐𝑡(𝐴1) 

where 𝑤1 refers to the matrix of weights to be applied to each neuron in the first layer of the 

NN, 𝑋 is the matrix of features of all training records, and 𝑏1 is the bias for the first layer. The 

dimensions of these 3 matrices are; 𝑋 is 𝑛 ∗ 𝑚, 𝑤1 is 𝑚 ∗ 𝑝 and 𝑏 is 𝑝 ∗ 1 where 𝑚 is the 

number of features in the input, 𝑝 is the number of neurons in the first layer, and 𝑛 is the 

number of training records. The number of trainable parameters for the 1st layer is therefore: 

(𝑚 ∗ 𝑝) +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑖𝑎𝑠 = (𝑚 + 1) ∗ 𝑝 

The output of this first step, 𝐴1, is therefore a matrix of size 𝑛 ∗ 𝑝 (where the bias term is 

added via broadcasting, i.e., it is transformed into a 𝑛 ∗ 𝑝 matrix by duplication and then 

added). 𝐴1 is the input to the second step, where 𝑎𝑐𝑡 is the activation function used in each 

neuron (ReLu in this study). Thus, the dimensions of 𝐻1 are also 𝑛 ∗ 𝑝. The activation function 

enables the network to learn non-linear relationships.  
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The output for each subsequent layer of the NN up to the output layer, but not including, is 

calculated as: 

𝐴𝑖 =  𝐻𝑖−1𝑤𝑖 +  𝑏𝑖  

𝐻𝑖 =  𝑎𝑐𝑡(𝐴𝑖) 

where 𝑖 is the current layer of neurons and 𝐻𝑖−1 is the output from the previous layer of 

neurons.  

In this study, the final output layer is a single neuron applying a Linear activation function to 

give a single regression prediction. During the training phase, once the predictions are 

generated by the forward pass outlined above, a loss value can be calculated for every training 

record. The objective of the optimization function is to minimise the loss function. Many 

optimization functions exist and are generally based on the principle of gradient descent [52]. 

During this process the derivatives are calculated and applied to the existing neuron weights 

and bias values for every layer. In this manner training the model weights occurs as: 

𝑊𝑖 =  𝑊𝑖 − 𝛼 ∗ 𝑑𝑊𝑖  

where 𝑊 are the weights, 𝑖 is the layer of neurons, 𝛼 is the learning rate and 𝑑𝑊 is the 

derivative of the weights. Likewise, the bias values are updated as: 

𝑏𝑖 =  𝑏𝑖 −  𝛼 ∗ 𝑑𝑏𝑖  

where 𝑏 is the bias value and 𝑑𝑏 is the derivative of the bias. Regularization techniques can 

also be used during training to limit the emphasis of individual weights [53]. Thus the weights 

in each layer are adjusted by the optimisation technique to minimise the loss. 

 

Convolutional Neural Networks 

A deep CNN attributable to Krizhevsky et al. (2012) [54], uses feed forward, back propagation 

and fully connected layers similar to traditional neural networks, but a CNN has at least one 

layer that uses a convolution operation instead of the aforementioned matrix multiplication 

operation for NN’s. The purpose of a convolution layer is to exploit localised topology in the 

input image. A convolution operates over 3D tensors, called feature maps (or the input image 

in the first layer), by analysing a portion of the input feature map and applying a 

transformation, using a filter or kernel, to the data. The filter is applied to all portions of the 
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input feature map in strides to produce an output feature map. More technically, the 

convolution is an element wise multiplication of 2 matrices followed by summation. One 

matrix is the input feature map, or input image in the 1st layer of the CNN, and the 2nd matrix 

is the filter kernel. Many different filters, encoding different characteristics of the input data, 

are applied to the input feature map and each filter adds another layer to the output feature 

map. Also, for colour images, as those used in this study, a 3D filter is used with a separate 

filter for each respective colour channel in the image. As many different characteristics will 

be present in the original input image, the objective of a CNN is to learn the most appropriate 

filter values to apply in order to identify those characteristics. Convolutions allow the model 

to apply three important ideas that can improve the model performance: sparse interactions, 

parameter sharing and equivariant representations [55]. A CNN is said to have sparse 

interactions as the kernel is smaller than the input and therefore fewer parameters are 

stored, and trained, which reduces the memory requirements of the model and improves 

statistical efficiency. Furthermore, the fewer parameters which are used, are shared as they 

are used multiple times. This occurs as each member of a convolution kernel are used at every 

position of the input, meaning that rather than learning a separate set of parameters for every 

location, only one set is required. This parameter sharing also leads to a property known as 

equivariance to translation whereby changes in the input result in the same changes occurring 

in the output. On a practical level, this means that an item of interest in an input image must 

not always be located in the same location of the images. 

When applying many different filters to the input image and subsequent feature maps in the 

subsequent network layers, computation may slow down due to the sheer number of feature 

maps produced. Furthermore, features identified in the input image may be present at 

different scales and therefore it is desirable to have a scale invariant representation of all 

identified features. A commonly used technique to reduce the size of the representation is to 

utilise Pooling layers [56]. These layers have no learnable parameters but rather use 2 

hyperparameters; stride length and pool size. The most common form of Pooling is max 

pooling and involves taking a portion of the feature map activations of the predetermined 

pool size, and only saving the maximum value in this window. The window then strides across 

the feature map by the pre-determined stride length and repeats the process. In this way the 

majority of feature map values can be discarded without losing the information previously 
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garnered. In essence the pooling layer will produce a feature map of lower resolution but with 

the previously identified features still present.  

Figure 7 below is a representation of the VGG-16 deep CNN developed by K. Simonyan and A. 

Zisserman in 2014 [57]. As can be observed, the image is represented as a 3D tensor as input 

into the network. Two convolutional layers using 64 convolutional filters (resulting in 64 

features maps) are applied, followed by a max pooling layer which down samples the input 

to the next layer by half. The number of convolutional filters applied in the subsequent 2 

layers are doubled to 128 in order to increase data representation. This is pattern is followed 

throughout but with 3 convolutional layers at latter stages of the network. Each convolutional 

filter kernel used in VGG-16 is 3 x 3 in size. This results in over 134 million learnable 

parameters/weights which are contained in the feature maps and the fully connected layers. 

As is often the case for CNN’s, the final layers of VGG-16 are fully-connected layers similar to 

those used in a traditional neural network. These are the most domain specific layers of the 

network. In the VGG-16 model 3 fully connected layers are employed before the final softmax 

output layer (softmax is an activation function commonly used in the output layer of multi-

class classification CNN’s). In order to apply transfer learning and switch between domains, 

or different image tasks, it is possible to remove the fully connected layers of a previously 

trained CNN. New fully connected layers are added with randomly initialised neuron weights  

and these fully connected layers, only, are trained on the domain specific image dataset. In 

this way, the capability of a well designed CNN, trained on a large quantity of images can be 

leveraged for more specific image problems with smaller datasets. As previously mentioned, 

this is known as transfer learning. Following the initial training phase of the fully connected 

layers a subsequent training phase is undertaken on the fully connected layers and a pre-

defined number of the convolutional layers. This second training phase uses a small learning 

rate in order to fine tune the model for the final subject domain. 
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Figure 7. Representation of the VGG-16 CNN developed by K. Simonyan and A. Zisserman [57]. 

Image reference: https://neurohive.io/en/popular-networks/vgg16/ 

 

CNN Application 

A pre-trained VGG-16 deep CNN (as presented in Figure 7), trained on the over 14 million 

images contained in the ImageNet database [58] was utilised in this approach. The pre-trained 

model was downloaded without the top 3 fully-connected layers from the Tensorflow Keras 

API [59]. Architecture optimisation was performed to decide the optimal number of fully 

connected layers, and number of neurons per layer, to add on top of the VGG-16 

convolutional layers. Techniques to reduce overfitting of training data such as proportion of 

dropout, weight regularisation, and image augmentation were also investigated. The image 

augmentation techniques investigated were vertical and horizontal flipping, colour channel 

range shifting, brightness range shifting, and zero-phase component analysis (ZCA) whitening. 

However, no image augmentation technique investigated had a positive effect on R2 or 

reduced MSE. After this process the optimum architecture found, and ultimately used, was 2 

fully connected layers with 128 neurons per layer, 10% dropout in the 1st fully connected 

layer, L1 regularisation, and no image augmentation for the Grilling cuts, resulting in a total 

of over 28 million parameters. The optimum architecture for the Roasting cuts was nearly 

identical except that 256 neurons per layer performed slightly better for this group of cuts. 
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The resulting total number of parameters for the Roasting cuts model was nearly 42 million. 

A single output neuron using a Linear activation function was included as the last layer to give 

the final prediction, as this is a regression task. The ReLu activation function performed best 

in the neurons of the 2 fully connected layers. Two distinct phases of training were employed. 

For the 1st phase, all weights in the convolutional layers of the VGG-16 model were frozen 

while training of the 2 fully connected layers was carried out using a MSE loss function and 

the ADAM optimization function [60]. This meant that 13.6 million of the total 28.3 million 

parameters were trained in this phase only for the Grilling model. Likewise, 27.2 million of 

the 41.9 million total parameters of the Roasting model were trained in the 1st training phase 

only. For the 2nd training phase, the final block of convolutional layers of the VGG-16 model 

was unfrozen and the RMSprop optimization function (an unpublished optimization algorithm 

initially proposed by Geoffrey Hinton in 2012) was used with a relatively small learning rate 

of 1e-5 to train the top 5 layers (3 convolutional layers and 2 fully connected layers). The 

RMSprop optimization function is similar to gradient descent but it manages momentum of 

the gradient. Mean squared error was also used as the loss function for this training phase. 

As the final block of convolutional layers was unfrozen in the 2nd training phase, a larger 

proportion of the total parameters were trained in each model. There were 20.6 million of 

the 28.3 million parameters fine tuned in the Grilling cuts model. For the Roasting cuts model, 

34.3 million parameters of the 41.9 million total were fine tuned. Separate models for 2D and 

3D images were trained and investigated. 

 

Approach 3 

The final approach to predict the grouped cuts involved programmatically measuring 346 

dimensions of the carcass from the 2D and 3D digital images. To enable the measurement of 

these dimensions, carcass segmentation was performed on the digital image using the 

computer vision library OpenCV [61]. The carcass was segmented from the image background 

by initially changing the colour space from Blue Green Red (BGR) tiff format to Hue Saturation 

Value (HSV). This was followed by thresholding on the hue channel to remove the background 

and produce a mask image of the carcass. Hue value histograms were created from a sample 

of the images in order to identify, and test, the best ranges to use for thresholding. Opening 

and closing morphological transformations were then applied to remove any noise artefacts 
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following thresholding. Example images from these processes are presented in Figures 8 and 

9. The resulting images were binary images with one class for white pixels and the second for 

black pixels. This allowed for easier classification of whether a pixel belonged to the carcass 

or not. In this way, carcass measurements could be made at predefined points of the image.  

 

 

Figure 8. Example 2D image processing steps, from left to right, for carcass segmentation. 

 

For the 2D images, thresholding was performed to remove the background of the image. 

Therefore, all black pixels in the final image were either belonging to the carcass or the steel 

frame used to support the carcass while it is being photographed. This frame was significantly 

different from the main body of the background in the Hue channel to prevent it being 

removed during thresholding along with the background. It was therefore important that 

carcass measurements were only taken at predefined points of the image, and fixed across 

all images. Three hundred and thirty points were selected in order to maximise carcass 

measurements yet avoid any steels structures present. The area of the carcass was also 

calculated for the same 6 regions of each image. As the image at this stage after processing, 

is stored as a binary 2-dimensional array, the measurement scripts were simply developed to 

count the number of values equal to 1 i.e. black, for certain rows of the image. It is possible 

that the camera may physically move very slightly over time, especially as the images used in 

this study were from a relatively long timeframe (2011 – 2018). Any movement of the camera 
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will cause bias in the measurements taken. For every image, 2 steel square structures are 

present in the top corners and these structures will obviously not change in size over time. In 

order to standardise the dimensions measured from the images, the area of the steel 

structure present in the top left corner of each image was calculated. The carcass dimensions 

measured were subsequently divided by this area value for each respective image.  

 

 

Figure 9. Example 3D image processing steps for carcass segmentation. 

 

Unfortunately, thresholding the 3D images was not as successful as the 2D images due to the 

added complexity of shaded areas included in the images. This resulted in more Hue value 

variation in the image. The objective was to segment only the shaded regions of the image. 

However, portions of the shaded areas on the carcass were often not present in the final 

image. The shaded areas were nearly always present on the hindquarters of the carcass, 

towards the top of the image. Therefore, scripts were developed to identify the height 

differential between the highest point of the shaded area compared to the baseline for the 

first 5 full shaded areas only. The approximate points where coordinates were recorded is 

displayed in Figure 10, and height differentials were calculated as 𝑋 − 𝑌. In total 10 height 

measurements were calculated from the 3D images and used along with the 2D 

measurements. 
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Figure 10. Approximate locations used to calculate height differentials. 

 

The resulting measurements were concatenated with the animal data used in approach 1 and 

the combined dataset was used as input feature data for 13 regression ML algorithms, also 

deployed and trained through the Python machine learning library scikit-learn [45]. The 

models were put through the same selection process used in approach 1 where the 3 best 

performing regression models with default hyperparameters were optimised using grid 

search cross validation with 10 folds. Once again, Gradient Boosting Regression reported the 

highest R2, lowest MSE and MAE for both Grilling and Roasting cut predictions following 

hyperparameter optimisation. The optimum hyperparameters for Grilling cuts was a learning 

rate of 0.1, a Huber loss function, a max depth of 3 and 700 estimators. For Roasting cuts, the 

same hyperparameters achieved the best prediction during cross validation except that 900 

estimators performed best. An adaption of this 3rd approach was also tested where predicted 

conformation and fat scores were not included as features in the data. The Gini feature 

importance values were also calculated for this approach, similar to approach 1 and explained 

above. 
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Results  

Figure 11 shows that the majority of records (48.7%) were from steers. Records from heifers 

and cows were the next highest represented animal type at 25.6% and 23.2%, respectively. 

Young bull records made up the remainder at a smaller proportion of 2.5%. The distribution 

of the biological traits Grilling yield and Roasting yield can be assimilated to a Gaussian 

distribution. The mean and standard deviation of Grilling yield was 34.93 kg and 5.31 kg, 

respectively and the mean and standard deviation of Roasting yield was 78.05 kg and 12.07 

kg, respectively.  

 

 

Figure 11. From left to right: Proportion of animal types in the full dataset; Distribution of the 

Grilling yield; Distribution of the Roasting yield. 

 

Feature importance values for approaches 1 and 3 are presented in Table 3. It is not possible 

to calculate feature importance for DL models such as those developed in approach 2. For all 

approaches presented in Table 3, carcass weight is by far the most important feature with a 

Gini importance of 0.80 or greater for each approach. Carcass conformation score is the 

second most important feature when used. Likewise, carcass dimensions are important 

features when used with their importance increasing in the absence of carcass conformation 

and fat scores. 
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Table 3. Gini feature importance values for approaches 1 and 3 

 Approach 1 Approach 3 

(Including Fat and 
Conformation score) 

Approach 3 

(No Fat and 
Conformation score) 

Feature Grilling Roasting Grilling Roasting Grilling Roasting 

Carcass weight 0.85 0.87 0.80 0.85 0.82 0.87 

Conformation 
score 

0.08 0.10 0.07 0.10 - - 

Fat score 0.01 <0.01 0.02 <0.01 - - 

Carcass 
dimensions 

- - 0.06 0.02 0.09 0.05 

Animal type* 0.02 0.01 0.02 <0.01 0.03 0.01 

Breed* 0.02 0.02 0.02 0.01 0.04 0.04 

Month of 
slaughter* 

0.01 <0.01 0.01 <0.01 0.01 <0.01 

Age at 
slaughter 

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Animal 
purpose* 

<0.01 0.01 <0.01 0.01 0.01 0.03 

Purebred <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

*one-hot encoded feature importance values summed together 

 

The predictive performance of models determined by mean R2 observed during cross 

validation is presented in Tables 4 and 5. All models, for both Grilling and Roasting yields, 

displayed a degree of stableness across folds as observed by a small standard deviation for 

the R2. The statistical significance of differences in model comparisons due to cross fold 

validation is a contested area [62]. As the repeated folds are not independent a conservative 

t-test can be performed on the differences between the mean R2 values of the highest and 

lowest performing models for each of the two cut categories. Thus, the difference for the 

Grilling cuts between the highest and lowest performing models is 0.030 and the pooled 

standard deviation is 0.018. This gives a t-statistic of 0.030/0.018 = 1.681, and corresponding 

p-value for a 2-sided t-test of 0.127 (9 degrees of freedom), which is outside the usual bounds 

for statistical significance. Similarly, for the Roasting cut the difference between the highest 

and lowest performing models is 0.009 and the pooled standard deviation is 0.007. This gives 
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a t-statistic of 0.009/0.007 = 1.286, and a corresponding p-value for a 2-sided t-test p-value 

of 0.231 (9 degrees of freedom), which is again outside the usual bounds for statistical 

significance. Normality of the samples has not been assessed for these tests. 

 

Table 4. Cross-fold validation Model performance for prediction of Grilling yield 

Approach Data Algorithm No. 
Folds 

Mean R2 St. Dev. 
R2 

1 Phenotypic Gradient 
Boosting 

10 0.695 0.021 

2 2D Images Deep Learning 3 0.714 0.011 

2 3D Images Deep Learning 3 0.717 0.010 

3 Phenotypic & Carcass 
measurements (No 
Fat & Conformation 
score) 

Gradient 
Boosting 

10 0.723 0.013 

3 Phenotypic & Carcass 
measurements 
(Including Fat & 
Conformation score) 

Gradient 
Boosting 

10 0.725 0.014 

 

 

Table 5. Cross-fold validation Model performance for prediction of Roasting yield 

Approach Data Algorithm No. 
Folds 

Mean R2 St. Dev. 
R2 

1 Phenotypic Gradient 
Boosting 

10 0.931 0.007 

2 2D Images Deep Learning 3 0.930 0.007 

2 3D Images Deep Learning 3 0.930 0.005 

3 Phenotypic & Carcass 
measurements (No 
Fat & Conformation 
score) 

Gradient 
Boosting 

10 0.936 0.007 

3 Phenotypic & Carcass 
measurements 
(Including Fat & 
Conformation score) 

Gradient 
Boosting 

10 0.939 0.007 
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The approximate training time for one iteration of cross-fold validation for the Gradient 

Boosting algorithm applied to the dataset used in approach 1 was 6 minutes. For Approach 3 

the training time increases to approximately 24 minutes per iteration due to the larger 

number of features. For Approach 2, the DL models take approximately 2880 minutes (48 

hours) to train. This can be an important consideration, especially given that DL models 

require significant computation infrastructure to train also. However, it must be noted that 

once trained, the amount of time to make a prediction is similar across approaches and takes 

only fractions of a second to complete. 

Tables 6 and 7 present the predictive performance of optimised models (optimal 

hyperparameters are presented for each model in the Appendix) on the hold-out test set. As 

this test set has never been included in any training or validation set, it allows for a more 

direct comparison between the different predictive models. For Grilling yields, approach 1 

utilising the structured animal data, had the lowest predictive performance on the test set 

with a R2 of 0.697. Predicting Grilling yield directly from digital images used to train a DL model 

increased predictive performance marginally to a R2 of 0.717 for both “2D” images and “3D” 

images. Including carcass measurements, taken from the digital image, increases the 

predictive performance further to a R2 of 0.729 giving the highest predictive performance for 

the Grilling yield overall. Removing the conformation and fat score predicted previously from 

the digital image by a different process decreases the predictive performance fractionally to 

a R2 of 0.723. For all models presented in Table 6, the MAE is close to 2 kg for a corresponding 

mean and std deviation of 34.93 kg and 5.31 kg for this dataset.  

The performance of the models trained to predict Roasting yield was more similar across 

approaches with a 0.007 R2 differential between the best performing and worst performing 

models (Table 7). Approach 1, utilising the structured animal data to predict the Roasting yield 

resulted in a R2 of 0.929 on the test set. The DL models used in the 2nd approach had 

fractionally worse performance for both “2D” and “3D” images with R2 values of 0.928 and 

0.927 respectively. Models produced from the 3rd approach had the best predictive  
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Table 6. Model performance for prediction of Grilling yield on hold-out test data 

Approach Data Algorithm R2 MSE MAE 

1 Phenotypic Gradient 
Boosting 

0.697 8.636 2.104 

2 2D Images Deep 
Learning 

0.717 8.073 2.066 

2 3D Images Deep 
Learning 

0.717 8.077 2.054 

3 Phenotypic & Carcass measurements (No 
Fat & Conformation score) 

Gradient 
Boosting 

0.723 7.894 2.004 

3 Phenotypic & Carcass measurements 
(Including Fat & Conformation score) 

Gradient 
Boosting 

0.729 7.731 1.977 

 

 

performance at a R2 of 0.931 without including conformation and fat scores, and 0.936 when 

including these scores. Again similar trends observed in the test set results were observed in 

the cross validation results. The range of MAE values is 2.019 – 2.217kg for all models 

presented in Table 7, with a corresponding mean and std deviation of 78.05 kg and 12.07 kg 

for this dataset. 

Noteworthy for both categories of cuts here is how closely the results in Tables 6 and 7 

correspond to the cross validation results presented in Tables 4 and 5. Using the hold out test 

set, the order of the performance of the models is repeated. As the sample sizes of the test 

sets are quite large it gives credence to the order of model performance. Across both cuts 

approach 3 performs best with the differences between models being quite small in absolute 

terms and in relation to their standard deviations from cross validation. This adds further 

credence to the stability and accuracy of the results. Overall, from a production viewpoint 

there are small differences in performance between models. The significance of this is 

discussed further below. 

The performance of DL models to predict individual carcass cuts is presented in Table 8. The 

models were trained on 2D images and the metrics presented are those achieved on the hold-

out test set. For all models predicting individual cuts the performance is less than grouped cut 

models. However, for all individual cuts that make up the Roasting yield (topside, silverside, 
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Table 7. Model performance for prediction of Roast cut yield on hold-out test data 

Approach Data Algorithm R2 MSE MAE 

1 Phenotypic Gradient 
Boosting 

0.929 10.459 2.215 

2 2D Images Deep 
Learning 

0.928 10.597 2.217 

2 3D Images Deep 
Learning 

0.927 10.652 2.171 

3 Phenotypic & Carcass measurements 
(No Fat & Conformation score) 

Gradient 
Boosting 

0.931 10.159 2.126 

3 Phenotypic & Carcass measurements 
(Including Fat & Conformation score) 

Gradient 
Boosting 

0.936 9.409 2.019 

 

 

knuckle and rump), each individual model performance is relatively close to that of the 

grouped Roasting yield model when using R2 to compare. The MAE and MSE metrics are lower 

but this is to be expected as the mean of these yields is also lower. For the individual cuts that 

belong to the Grilling group, striploin and fillet have R2 values approaching that of the grouped 

cut. However, the performance of the cube-roll cut is quite reduced from the grouped model 

performances.  

 

Table 8. Predictive performance on hold-out test data for DL models trained on 2D images to 

predict individual carcass cuts 

Cut R2 MSE MAE 

Striploin 0.674 2.770 1.229 

Fillet 0.648 0.431 0.480 

Cube-roll 0.489 3.119 1.280 

Topside 0.903 1.300 0.822 

Silverside 0.885 1.810 0.982 

Knuckle 0.874 0.559 0.553 

Rump 0.841 1.383 0.884 
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Discussion 

The current EUROP beef carcass classification protocol in use in abattoirs in Europe, Australia, 

New Zealand, and Uruguay provides a mechanism to group visually similar carcasses together 

for processing, price reporting, and trade to wholesalers. In nearly all abattoirs EUROP 

classification is carried out by video image analysis (VIA) which replaced human visual 

inspection up to two decades ago [4]. Although this EUROP classification system allows for 

the grouping of visually similar carcasses, the degree of association between EUROP class and 

meat yield is highly variable [5-9] due in part to the proportion of bone and fat present 

throughout the carcass. It is therefore desirable at an industry level to have mechanisms to 

predict the actual meat yield of a carcass accurately.  These predictions could be used for 

processing and valuation at the time of slaughter. Another potential application of carcass cut 

predictions is their use in beef breeding programmes. Collection of carcass cut yields is an 

expensive and time-consuming process. Heritability estimates for the predictions presented 

here could be calculated. Depending on the heritability of our carcass predictions, it may be 

possible to calculate breeding values for Grilling and Roasting cut predictions in order to breed 

for higher yields of these more valuable cuts of meat. Other predicted carcass traits are 

already in use in many animal breeding selection indexes, most notably carcass conformation 

and carcass fat scores. 

Previous studies have reported good prediction of meat yield for total saleable meat yield, 

and individual cuts [5-9], but results have been variable. Also, many of these studies have 

been carried out on research datasets of limited size. In this paper we have trained and tested 

models on large, industry gathered datasets containing animals of different breed, age, and 

sex, and also a wide range of carcass cut yields. Furthermore, there is little evidence in the 

literature of DL trained on carcass images, even though vast improvements have been made 

in the performance and application of deep convolutional neural networks to image data in 

the last decade [11]. Therefore we have created DL models to predict two grouped carcass 

cut yields from images, and compared the predictions to alternative machine learning 

algorithms and techniques. To the authors’ knowledge this is the first application of DL models 

to carcass images in order to predict carcass cut yields. 

One of the key results of this study is that there is little difference in the performance of the 

DL and ML models.  From a practical point of view, once these DL models are trained, the 
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models are easier to deploy than the ML models. This is because the DL models require the 

carcass images only, captured in the abattoir within minutes of slaughter. In contrast the ML 

models require significant more data collection. In approach 3, carcass measurements were 

combined with the associated animal data. Matching carcass images to animal data adds a 

layer of complexity and likely removes the possibility of an immediate prediction as nearly 

always the associated phenotypic data is stored in databases not instantaneously available to 

the abattoir. Consequently, it may be preferred at a processing level to obtain an immediate 

cut yield prediction with a slightly reduced predictive performance. In this scenario, our DL 

models predicting grouped carcass cuts from digital images could offer a mechanism to 

achieve just that. However, from a carcass processing and valuation viewpoint abattoirs will 

likely be more interested in predictions of individual carcass cuts rather than the grouped 

carcass cuts we have predominately presented here. For this reason, the performance of DL 

models was also investigated for individual cuts and these results are presented in Table 8. 

The performance of 6 of the 7 individual cuts investigated is relatively similar to that of the 

grouped cut that each individual cut belongs. The cube-roll cut was an exception to this trend 

with a predictive performance quite reduced from the Grilling cut performance. This result is 

somewhat surprising and perhaps indicates that cube-roll processing is more open to 

individual bias by the person extracting this cut. 

In the present study we observed a marked improvement in all model performances for 

predicting Roasting yields compared to predicting Grill yields. Pabiou et al. [9] also found 

variation in predictive performance for different areas of the carcass. The EUROP 

conformation classification places large emphasis on the hindquarters of a carcass. As 

observed in Figure 4, the Roasting cuts are exclusively in this area of the carcass and it can 

therefore be postulated that predicted conformation score is more highly correlated to 

Roasting yield than Grilling yield. However, DL models also had much improved predictive 

capability for Roasting yield over Grilling yield when trained on the images alone without any 

predicted conformation score included in the model. The Roasting yield has a larger mean 

weight than the Grilling yield and makes up a larger proportion of the total carcass. Therefore 

many more pixels from the digital image contain direct information on the Roasting yield than 

the Grilling yield. Conversely, the Grilling cuts have a smaller proportion of image pixels 

conveying direct information on these cuts. Furthermore, the fillet cut which is one of three 
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Grilling cuts, is located beneath the rump and striploin cuts and therefore is not directly 

represented in any image pixel. Many successful applications of DL applied to images match 

the performance of a trained human [63]. Fundamentally, these DL applications do not 

observe visual information beyond the capability of the human eye. Given that little 

information on Grilling yield is directly available from the image it is our opinion that the DL 

models presented here are approaching the predictive ability of a trained human grader. 

Deep learning models are more typically applied to image classification problems rather than 

regression as used here. Often, for these classification problems a noticeable difference is 

observed between the image classes. However, in the dataset investigated here, differences 

between carcass images are more subtle. This may be one reason that image augmentation 

techniques did not improve the performance of the CNN’s, as even with image augmentation 

techniques employed, some overfitting was observed. Also, performance metrics were 

slightly worse when using image augmentation. Given the similarity of the carcass images, it 

may be the case that vastly larger datasets of carcass images are required to improve 

prediction. Here we have used 43,628 and 55,362 training records for Grilling and Roasting 

cuts respectively. Compared to the training set sizes observed in many successful DL models 

such as those trained on the ImageNet database with over 14 million images, the size here is 

limited especially considering the similarity between carcass images. In this study we have 

applied transfer learning to overcome this issue of a smaller dataset, however, a much larger 

dataset would be an optimum solution. Nonetheless, given the impracticality of obtaining a 

carcass image training dataset of millions of records with associated meat yields, a more 

suitable option may be to collect more information from the digital images. This is commonly 

applied with the current VIA processes for EUROP score prediction and we have also 

investigated this approach by including carcass measurements in ML models. Although the DL 

models presented here had slightly better predictive performance for Roasting yield and 

nearly equal performance for Grilling cuts compared to models trained in approach 1, 

including carcass dimensions in ML models gave the best overall performance. However, 

predicted conformation and fat scores are still necessary features to include to maximise 

performance. Dropping these two features narrowly reduces the predictive performance of 

the models. However, the fact that a reduction in performance does occur, indicates that the 

current VIA processes effectively capture available information from the carcass images, and 


