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A B S T R A C T

This paper addresses the integration of electric vehicle (EV) fleets into industrial smart grids to increase
operational flexibility. It focuses on an extended multi-objective optimization problem that minimizes two
primary objectives: (i) the electricity expenditure of a company using its employees’ EV batteries as temporary
distributed energy storage, and (ii) the costs associated with the degradation of EV batteries, given the
additional usage from the company’s perspective. In this paper, the utilization of an EV fleet is simulated
at the individual car level over a one-year period. These optimization problems were balanced by using
real-time electricity prices and the effective demand response (DR) of the company’s electrical load. The
company utilized the EVs as battery storage to offset fluctuating electricity prices, while compensating EV
owners with free electricity for the costs incurred through degradation of their batteries. The extent to which
the company could compensate EV owners while maintaining the viability of vehicle-to-grid (V2G) services in
a non-residential scenario was explored. The results established an equilibrium point at which the financial
benefits for the company resulting from V2G services was maximized against the negative financial impact
of increased battery degradation for EV owners. The results showed that there is a potential mutual benefit
between the company and EV owners, even if the company provided EV owners with free charging (based
on a percentage of their battery capacity) for each day of their attendance. This mutually beneficial zone
ranged from 3%–10% of the battery capacity for AC charging and 6%–17% for DC charging. Optimal Pareto
values indicated an economic trade-off that benefited both stakeholders, with DC charging proving significantly
more profitable for the company than AC charging (between 257.5% to 38.1% depending on the amount of
free charging provided). The findings emphasize the need for an equitable pricing mechanism considering the
different characteristics of EVs based on the operational and financial benefits for both parties to create a
balanced pricing framework for V2G.
1. Introduction

1.1. Motivation

Today’s transportation industry is undergoing a profound trans-
formation. Marked by record growth in EV sales, including battery
electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs),
which increased by 55% in 2022 compared to 2021, to over 10 million
units sold worldwide [1]. Given the ratio of EV sales to total vehicle
sales increased from 9% in 2021 to 14% in 2022, a very substantial
increase can be observed in the growth of EV sales [1]. This shift
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from internal combustion engine vehicles to electric mobility offers
a promising opportunity to address environmental challenges and the
need for clean energy solutions. The EU Commission’s ambitious targets
for vehicle emissions and the ambitious goal of zero emissions from
new cars by 2035, underscore the growing global trend towards low,
and zero-emission vehicles [2]. Given the large number of EVs parked
at company’s car parks, the possibility of using the storage capacity
of EV batteries via vehicle-to-grid (V2G) or vehicle-to-building (V2B)
systems offers a compelling prospect. Accordingly, EV fleets could be
considered as a battery swarm that temporarily takes the function of
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Nomenclature

Acronyms/abbreviations

BDC Battery degradation costs
BES Battery energy storage
BEV Battery electric vehicle
C-rate Charging rate
CS Charging station
DOD Depth of discharge
DR Demand response
DRAF Demand response analysis framework
DSM Demand side management
EEG German renewable energies act
EG Electricity grid
EOL End of life
ESS Energy storage system
kWh Kilowatt-hour
MIC Maximum import capacity
MILP Mixed integer linear programming
MOO Multi-objective optimization
PHEV Plug-in hybrid electric vehicle
PV Photovoltaic
RES Renewable energy sources
RTP Real-time pricing
SC Smart charging
SOC State of charge
TCC Total company’s cost
TOU Time-of-use
V2B Vehicle-to-building
V2H Vehicle-to-home
V2X Vehicle-to-everything

Symbols

𝛥𝑡 Time step, 15 min
𝜂self Self-discharge of the electric vehicle
𝜂𝑖 Efficiency of the on-board charger for EV i
𝜆max Maximum EV battery capacity limit (kWh)
𝜆min Minimum EV battery capacity limit (kWh)
𝐸EV EV Battery capacity (kWh)
𝛼 Pareto weighting factor
𝛼c𝑡,𝑖 Battery degradation coefficient at time 𝑡 for

EV 𝑖
�̄�EV
𝑖 Average SOC of the 𝑖th EV during battery

utilization
𝛽1 → 𝛽8 Fitting parameters of the battery degrada-

tion model
𝜋𝑡 Real-time pricing at time 𝑡
𝜑 Normalization factor
𝐶Bat Capital cost of the battery [e/kWh]
𝐶EG,NF Network fees for purchased electricity
𝐶TOT

argmin Total costs to be minimized

𝑐EG,buypeak Peak price for buying electricity

𝐶deg
𝑡,𝑖 Battery degradation cost per time interval

at time 𝑡
𝐶EG,addon
𝑡 Time-independent fixed energy price

𝐶RTP
𝑡 Dynamic RTP

𝐶𝑅EV C-rate of the EV
𝐸EV,cap Maximum EV battery capacity
2 
𝐸EV
𝑡,𝑖 Stored energy of the 𝑖th EV at time 𝑡

𝐸exch
𝑡,𝑖 Amount of electricity exchanged by the 𝑖th

EV at time 𝑡
𝑃 EG,MIC Maximum import capacity of the grid
𝑃 EG,dem
𝑡 Electricity demand of the company at time

𝑡
𝑃 EG,sell
𝑡 Grid electricity sell quantity at time 𝑡

𝑃 EV,ch
𝑡 Charging of EV (kW)

𝑃 EV,dis
𝑡 Discharging of EV (kW)

𝑃 EG,buy
peak Annual peak power for buying

𝑃 EG,consumpt
𝑡 Electricity consumption at time 𝑡 from the

grid
𝑇 Bat Battery temperature of the EV
𝑦EV,ch𝑡,𝑖 Decision variable for charging
𝑦EV,dis𝑡,𝑖 Decision variable for discharging
i Current electric vehicle
N Total number of time steps

a stationary battery storage to provide the necessary storage capacities
and balance the fluctuations of supply and demand. This could facilitate
ancillary services such as peak shaving and grid stabilization, rewarding
EV owners for their participation while increasing the operational
flexibility of smart grids and the company’s flexibility. According to [3],
EVs that are V2G-capable and have a high charging capacity, are highly
suitable to create economic benefits. Especially in a non-residential
environment, a large EV fleet could become a key demand-side resource
for a company’s smart grid infrastructure to provide demand response
(DR). Traditionally, DR systems have been accessible mainly to the
industrial sector [4]. Due to the considerable size of industrial plants
and the presence of sophisticated information technology infrastruc-
ture, industrial DR promises effective implementation and application
of V2G/V2B [5]. Hence, innovative strategies and novel concepts are
essential for enhancing the economic and environmental effectiveness
of the growing EV supply. Ultimately, the adoption of V2G and V2B
technologies not only provides grid stability [6], but also opens eco-
nomic opportunities for EV owners in the form of free or subsidized
charging facilities at work, making the transition to electric mobility
even more attractive and sustainable.

1.2. Literature review

There is extensive literature, assessing the potential of Vehicle-to-
Everything (V2X) concepts, especially Vehicle-to-Home (V2H) studies.
These focus on home energy management systems in the context of
a home microgrid [7–13]. However, in this paper, only studies on
V2G/V2B technologies, outside of exclusively residential scenarios, are
considered to address research gaps. By focusing on non-residential
buildings, such as commercial buildings, office complexes, car parks,
etc., we hope to gain new insights from these systems, as the potential
for scalability and flexibility in this context is more far-reaching than
in residential scenarios. As a proof-of-concept, this work is intended
to provide the basis for future research in this promising and rapidly
evolving field of electric mobility.

Table 1 provides a comprehensive comparison of recent studies
in this field, categorized based on framework, objective, methodol-
ogy, compensation for EV owners, as well as time horizon and time

resolution of the considered simulation.
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Table 1
Comparison of the proposed method to similar studies.

Study Framework Objectives DR
program

Compensation
for EV owner

Main
load

Analysis of
EV
characteristics

Deg Time horizon/
resolution

[14] V1G Peak shaving and valley filling x x ✓ x x 24 h/15 min
[15] V1G Valley Filling, reducing peaks ✓ x x x x 24 h/1 h
[16] V1G Minimizing the Peak, demand charge and energy cost ✓ x ✓ x x 1 week/15 min
[17] V1G Maximizing the utilization of PV generation through

SC
✓ x x x x 24 h/15 min

[18] V2G Evaluating the impact of charging strategies and V2G
schemes on EV battery Deg

x x x x ✓ 24 h/1 s

[19] V2G Maximizing the use of the local energy and
minimizing the power sold to the grid

x x ✓ x x 24 h/1 h

[20] V2G Minimizing the peak power consumption of building x x ✓ x x 24 h/10 min
[21] V2B Reducing the peak and minimizing the amount of

power imported from the grid
x x ✓ x x 24 h/5 min

[22] V2G Maximizing the use of PV energy for EV charging x x x x x 1 year/1 min
[23] G2V, V2B Benefits of EVs in smart grids, focusing on DSM ✓ x ✓ x x n/a
[24] G2V, V2G Flattening the peak load and minimizing the daily

total cost
✓ x ✓ x ✓ 24 h/1 h

[25] V2G Minimizing the total cost of the charging station (CS) ✓ x x x x 11 h/30 min
[26] V2G, G2V Minimizing total cost, increasing PV self-consumption ✓ x x x ✓ 24 h/15 min
[27] V2G Minimizing the total operation cost ✓ x ✓ x ✓ 24 h/1 h
[28] V2B, B2V Minimizing the daily electricity cost ✓ x ✓ x x 24 h/1 h
[29] V2G Reducing the peak pressure of the public grid ✓ x x x x 14 h/n/a
[30] V2G Minimizing the total cost of charging the EVs, feeding

PV power and offering reserves
✓ ✓ x x ✓ 24 h/15 min

[31] V2G Maximizing the workplace charging station owner’s
profit

✓ ✓ x x ✓ 24 h/1 h

[32] V2G, V2H Reducing energy cost of the end-users, decreasing the
peak load demand

✓ ✓ ✓ x ✓ 24 h/n/a

[33] V2G Minimizing the total cost of an intelligent parking lot
operation

✓ ✓ x x x 24 h/1 h

[34] V2G Maximizing profit from price-based energy arbitrage ✓ ✓ x x ✓ 1 year/1 h
[35] V2G Maximizing the revenues by an EV aggregator through

the trading of electricity
✓ ✓ x x x 1 week/1 h

[36] V2G Minimizing the total operational costs and emissions ✓ ✓ x x x 24 h/1 h
[37] V2G, V2B Minimizing the total cost of electricity for the

building and cost of charging the EVs
✓ ✓ ✓ x ✓ 3 months/

15 min

[38] V2B Minimizing the total energy cost of the building ✓ ✓ ✓ x x 24 h/1 h
[39] V2G Evaluating the potential of peak shaving and valley

filling
✓ ✓ ✓ x ✓ 24 h/1 h

[40] V2G Maximizing profit to each EV owner ✓ ✓ ✓ x ✓ 24 h/1 h
[41] V2G Minimizing the total operation costs of the microgrid ✓ ✓ ✓ x x 24 h/1 h
[42] V2G Minimizing the total cost of electricity and the

penalty cost of wasting renewable power
✓ ✓ ✓ x x 7 days/30 min

[43] V2G Maximizing profitability for the buildings, and fleet of
EVs

✓ ✓ ✓ x x 24 h/1 h

[44] V2G Minimizing the total cost of the building and the
revenue from discharging EVs

✓ ✓ ✓ x ✓ 1 month/
1 h

[45] V2G Limiting the impact of the PHEV’s charging and
maximize the utilization of the PV

✓ ✓ ✓ x x 9 h/6 min

[46] V2G Minimizing grid fluctuation, maximizing RES
utilization and benefits for EV users

✓ ✓ ✓ x x 1 month/
15 min

This study V2G, V2B Minimize the energy cost of a company vs the
degradation costs of the EV batteries

✓ ✓ ✓ ✓ ✓ 1 year/15 min

V1G = unidirectional smart charging; Deg = Degradation (battery degradation was considered in the study).
In [47], the literature regarding EV battery usage in non-residential
DR scenarios considering battery degradation was reviewed. The re-
sults showed there is a lack of V2G studies that comprehensively
consider DR and battery degradation in EV charging scenarios and
balance it with financial compensation for EV owners. It was also found
that when considering degradation of EV batteries in optimization
scenarios, degradation models should be used that include several ex-
ternal influencing factors (battery temperature, charging-rate (C-rate),
state-of-charge (SOC) or depth-of-discharge (DOD)).
3 
The authors of [14–17] each addressed important aspects of EV
charging, proposed methods for peak shaving and valley filling, ad-
justing EV charging schedules to balance the load on the power grid.
However, their framework was only designed for a unidirectional sys-
tem (V1G). The authors of [16] focused on peak shaving and energy
costs, suggesting a controlled charging approach to manage the impact
of EV charging on the power grid. The maximization of photovoltaic
(PV) generation utilization was achieved in [17] through smart charg-
ing (SC) of EV fleets. Other studies used a V2G/V2B framework to
investigate the potential of bidirectional charging, but did not consider
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varying electricity prices such as a time-of-use (TOU) or real-time-
pricing (RTP) tariff [18–22]. The authors of [20] showed that the peak
power consumption of a building can be minimized using V2G. It was
demonstrated that the effectiveness of peak shaving and valley filling
depends on the number of available parking spaces for EVs and that
the reduction of peak power consumption is not linearly dependent
on the number of occupied parking spaces. In [21], peak power was
reduced, and the electricity imported from the grid was minimized. The
study proposed a dual-tracking control problem for a smart building
integrated with a microgrid and a V2B-based DR system. The authors
of [22] maximized the use of PV energy from a solar-powered charger
with V2G technology for workplace EV charging. In [23], detailed re-
search was presented on the use of EVs as distributed energy resources
in the smart grid, which can serve as a controllable load in a power
grid depending on the demand. The results showed the feasibility of the
proposed concept for demand-side management (DSM). They suggest
that with enough EVs available, the bundled batteries could be used to
meet the electricity demand of a typical building and generate revenue.

Studies [24–29] addressed the integration of EVs and PV into energy
and mobility systems when considering dynamic electricity prices in
a V2G/V2B framework. However, direct financial compensation to EV
owners due to additional battery degradation from V2G and V2B was
not included in these studies. The studies [30–33] included a V2G
framework, dynamic pricing, renewable energy sources (RES), and
financial compensation for EV owners for participating in V2G services.
However, all these studies simulated a time frame of only one day.
In [31], a new single optimization mixed integer linear programming
(MILP) framework was proposed to coordinate the charging of multiple
EVs based on the day-ahead electricity price parked at a workplace
charging station equipped with PV. However, a static battery degrada-
tion value of e0.032/kWh was assumed, and a main load profile of a
building was not simulated, which limits the flexibility of V2G services.
In [33], an intelligent parking lot with PV, distributed generators, and a
bidirectional grid connection was presented for stochastic charging and
discharging scheduling of 500 EVs. The owners of the EVs could make
a profit by discharging their EVs and receiving additional incentive
payments for providing reserves while having the desired SOC at the
departure time. However, battery degradation was not considered in
this study.

The studies [34–46] considered compensation for EV owners in
addition to the bidirectional framework and the DR program, but have
not investigated the impact of different EV characteristics. Study [34]
focused on maximizing profit through price-based energy arbitrage
by using EVs as network batteries. Considering a battery degrada-
tion model and German day-ahead pricing signal for 2019, 123.28
e/EV/year could be generated for a 24 kWh battery. The study in [35]
investigated the optimal business case for the provision of grid services
by EVs with V2G capabilities. In study [36], a multi-criteria planning
method is proposed for operational planning of a large number of
EVs in an intelligent distribution system to minimize operating costs
and carbon emissions. The EV owners received an incentive price for
discharging their vehicles, ignoring battery degradation. An optimiza-
tion model for collaborative charging with V2B technology that was
beneficial to both the campus and EV owners in a regulated electricity
market was presented in [37]. This model allowed EV batteries to be
charged for free while reducing the campus electricity bill. However,
a static price for battery degradation was applied for the simulation
in [37]. In [38], an optimal charging and discharging approach for
PHEVs was proposed, which aimed to minimize the peak load and
the total energy cost. Studies [39,40] focused on optimizing charging
infrastructure and planning. Huang et al. [39] examined the economic
impact of V2G technology in the workplace, especially with regards to
peak shaving and valley filling. The authors of [40] presented models
for optimal scheduling of EV charging and discharging in parking lots

to maximize revenue for EV owners and maximize EV penetration.

4 
Despite a growing body of research on V2X concepts, particularly in
the context of V2G and V2B technologies, there is a noticeable gap in
evaluating the impact of individual EV characteristics on profitability
outcomes for companies providing V2G services or EV owners receiving
free or subsidized charging. To the best of the authors’ knowledge,
no study has conducted an in-depth investigation of the relationships
between EVs’ C-rate and battery capacity and the profitability of DR
in V2G services. Such an investigation could provide valuable insights
for optimizing charging and discharging strategies, especially in non-
residential buildings such as factories, retail spaces, or office building
complexes, as these offer greater potential for scalability and flexibility
than residential properties. Assessing the effects of C-rate and battery
capacity on profit, would also help to gain a better understanding
of the financial implications for both V2G providers and EV owners
who benefit from free or subsidized charging. Therefore, this area
of research deserves further exploration and analysis to enable more
informed decisions in the emerging field of electromobility and to
find equitable compensation approaches for battery degradation as a
function of EV characteristics.

As illustrated by the literature review and the analysis in Table 1,
the main research gaps in the field of non-residential V2G optimization
can be summarized as:

- Holistic solution: lack of simultaneous optimization of the critical
objectives of the different stakeholders (company and EV owners)
based on RTP and the effective DR of the company’s electrical
load. None of the previous studies have addressed the trade-
off, optimization of energy costs for the company and battery
degradation of EVs in a non-residential scenario.

- Compensation models for EV owners: There is a need to explore
and formulate new V2G or V2B compensation strategies for EV
owners. Most studies lack a detailed trade-off of this critical
aspect that may affect the acceptance and adoption for EV owners
of these technologies.

- AC vs. DC charging: Investigating the impact of AC and DC
charging on economic profitability for companies and EV owners
represents a gap within the current field of V2G studies.

- Comparison of EV characteristics: There is a significant gap in the
literature regarding the systematic comparison of EV characteris-
tics in DR scenarios that examines the correlations between C-rate
and battery capacity, and their respective effects on the economic
viability of V2G services, as well as the financial implications for
EV owners receiving incentive-based charging schemes.

- Long-term effect studies: Most studies have looked at relatively
short time horizons (daily or weekly). More research is needed
to understand the long-term impacts and benefits of implement-
ing V2G/V2B strategies to account for seasonal fluctuations and
long-term trends in the electricity market, and to capture the
integration of renewables. For example, over several months or
a year.

1.3. Contributions and novelty of this research

The goal of this paper is to address the identified research gaps
and to quantify the potential of a V2G framework in a manufacturing
company. It focuses on using employees’ EVs as temporarily battery
storage for price-based DR and self-consumption optimization and as-
sessing its impact on the company and on EV batteries. To achieve
this, we apply a MILP model for multi-objective optimization (MOO)
targeting the company’s energy costs and the battery degradation of
EVs on real-world data from a German company for different scenarios
and contexts. This load model was based on empirical data from a
manufacturing factory in Germany. The recorded grid and climatic data
were obtained from corresponding times and locations as the load,
along with consideration of the peak price of the electricity grid (EG)

and the maximum import capacity (MIC) of the company, established
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a reality-based approach. The modified EV battery degradation model
is based on an existing model [9], which was validated using empirical
data.

We simulate a smart grid to study DR based on the German RTP
electricity price for the year 2022, using empirically derived parameters
such as load efficiencies and charging rates. The case study examines
a smart grid with a V2G-enabled EV fleet, considering factors such
as EV availability, 15 min resolution electricity prices, weather data,
and a battery degradation model. A key objective is to minimize cycle
degradation, taking into account battery temperature, C-rate, and the
average SOC of each EV on site at the company. Within this framework,
the benefits for EV owners should be at least as high as the costs
of battery degradation, if not many times higher, to achieve general
acceptance of V2G.

Therefore, the paper addresses the aforementioned gaps in the
current research field and the novelty of the paper can be presented
as follows:

(i) The development of a MILP model to operationally optimize a
charging strategy that minimizes corporate energy costs through
price-based DR and self-consumption optimization while mini-
mizing battery degradation for EV owners during charging and
discharging of their EV battery.

(ii) Analysis of the company’s energy costs and an assessment of
the potential battery degradation through DR, while showing
a mutually beneficial trade-off for both stakeholders (company
and EV owners).

(iii) The comparison of the impact of AC and DC charging on eco-
nomic profitability for EV owners and the company in the con-
text of V2G.

(iv) In this novel approach, we investigate the interaction of C-rate
and battery capacity of EVs and evaluate their impact on V2G
optimization.

The remainder of this paper is organized as follows: An overview of the
system is given in Section 2. Then, the optimization model is described
in Section 3 and the case study data in Section 4. Subsequently, the
scenarios for analysis are defined in Section 5, before the results are
elaborated and discussed in Section 6. Finally, Section 7 provides
concise conclusions.

2. System description

2.1. Overview

In this paper, we propose a decentralized optimization framework
for planning the charging and discharging of EVs. The focus of this
research is on implementing an optimization framework that has im-
pacted energy distribution by fostering collaboration among different
stakeholders. In our decentralized approach, it is the manufacturing
company with a high and variable electricity demand typical for pro-
duction, and the company’s employees, who provide and are com-
pensated for providing their EVs for V2G purposes. Our focus is on
maximizing stakeholder benefits, through SC, V2X, and smart grid
services such as energy arbitrage, DR, and self-consumption optimiza-
tion. These services are designed to benefit stakeholders, at multiple
levels, from transmission to behind-the-meter services such as peak load
reduction, energy bill reduction, and potential emissions reduction. The
framework of this study is presented in Fig. 1.

2.2. Assumptions for the mathematical model

The modeling of the V2G framework is dependent on a variety of
parameters, including EV battery specifications, technical constraints,
company capabilities, EV availability, MIC, battery capacity, battery
chemistry, and practical procedures. In this paper, the following as-
sumptions are made for the simulation of the optimization model,
which have been adopted and extended from [48]. These assumptions

are valid for all cases and scenarios:
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• All time series are provided in quarter-hourly resolution.
• The time span in which V2G services can take place in the

company is from the arrival time to the departure time. Each
charging or discharging operation takes at least 15 min.

• The battery temperature is determined by calculating the moving
average of the ambient temperature. This ambient temperature is
measured every hour on the company premises and the moving
average is based on the last three hours.

• The historical price signals of the German electricity spot market
in 2022 were used for optimization. Moreover, the purchase price
for electricity is higher than the sale price in each time step as it
includes taxes and levies, and purchase and sale prices are not
changed by charging or discharging EVs.

• The effect of charging on battery degradation is the same as
that of discharging, which is in line with the results of Saxena
et al. [49].

• Degradation that occurs outside the company’s availability win-
dow and the impact of calendar-based degradation do not influ-
ence the optimization process. The company is equipped with the
necessary charging infrastructure for the proposed concept, and
the limits of grid import and export are not exceeded.

• The load profiles of the company’s electricity demand are known.
• EV battery SOC, arrival and departure time, and final SOC at

departure time are known.
• The maximum EV charging C-rate will not change during V2G

service up to a SOC of 80%. Above 80%, the C-rate decreases to
50% of the maximum charging rate.

• Any energy exchange or energy consumption of the EVs by driv-
ing or charging beyond the time limits where the EV is available
to the company is not considered.

• EV batteries are considered to have reached the end of their life
(EOL) when their state of health decreases to 80%.

3. Optimization model

3.1. Framework

The input parameters of the EV planning model were selected based
on technical constraints, the theoretical capabilities of the company and
practical methods. To investigate the trade-off between the company
and the EV owner, we developed a deterministic MILP model. The
Demand Response Analysis Framework (DRAF), an open-source Python
tool developed for the environmental and economic analysis of DR, was
used as the underlying simulation environment for this purpose [50].
The Gurobi 9.5 solver was used to solve the model through its Python
interface [51]. All the simulations have been carried out on a virtual
machine, with an Intel® Xeon® Processor E5-2670 v3 CPU 2.3 GHz
processor with 12 cores and 64 GB RAM. Throughout the analysis, we
assume perfect foresight and simulate a year with 15 min time steps 𝑡 ∈
𝑇 , i.e. 35,040 time steps and 𝛥𝑡 = 15 min. The use of 15 min time steps
in the EV fleet planning model is quite beneficial, especially considering
that the spot markets also operate in the same 15 min intervals. This
synchronization allows for a more accurate representation of market
dynamics and thus a better match between the simulations and actual
market conditions.

3.2. Objective function

To realize the multi-objective planning strategy for the DR, the
minimization of the total company’s cost (TCC) is combined with the
minimization of the battery degradation costs (BDC) of the EVs based
on the real-time electricity price in the electricity market. The blended
objective function of the MILP problem to be minimized is given by (1).

𝐶TOT = 1 − 𝛼 TCC𝜑 + 𝛼BDC𝜑 (1)
argmin ( )
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Fig. 1. Overview diagram of the MILP model. It shows the external energy supply (bottom left), the on-site energy supply (middle) including the EV fleet, the associated charging
infrastructure, the energy demand of the company (bottom right) and the energy flows between these components. The energy market is shown at the top left and the battery
degradation model is shown below. The controller (optimization model) collects all available information (battery degradation model, market data, storage availabilities and levels,
weather data, and smart grid energy components) and creates an optimized schedule for charging and discharging EVs based on the parameters of the MOO’s objective function
(center right).
where 𝐶TOT
argmin are the total costs to be minimized (TCC and BDC). The

values of the TCC in e/year and the cost of degradation in e/year are
scaled by a normalization factor 𝜑 to have the same order of magnitude.
The Pareto weighting factor 𝛼 is varied between 0 and 1 to produce
Pareto-optimal planning strategies and to analyze the optimal trade-off
between profit for the company and battery degradation of the EVs.

3.3. Total company costs

TCC =
𝑁
∑

𝑡=1

(

𝑃 dem
𝑡 + 𝑃 EV,ch

𝑡,𝑖 − 𝑃 EV,dis
𝑡,𝑖

)

𝛥𝑡𝜋𝑡 + 𝐶EG,NF (2)

where 𝑃 dem
𝑡 is the electricity demand at time t, 𝑃 EV,ch

𝑡,𝑖 is the power
supplied to the EVs at time 𝑡, and 𝑃 EV,dis

𝑡,𝑖 is the power discharged from
the EVs at time 𝑡. 𝜋𝑡 is the RTP at time 𝑡, which is assumed to be a known
parameter for optimization. 𝑁 is the total number of time steps, and 𝛥𝑡
is the time step. 𝐶EG,NF are network fees for purchased electricity from
the EG, which is defined by:

𝐶EG,NF = 𝑃 EG,buy
𝑝𝑒𝑎𝑘 𝑐EG,buy𝑝𝑒𝑎𝑘 (3)

where 𝑃 EG,buy
𝑝𝑒𝑎𝑘 is the annual peak power transmitted from the EG, 𝑐EG,buy𝑝𝑒𝑎𝑘

is the peak price. The buying price is higher than the selling price from
the EG because taxes and levies are added to the electricity purchase.
Therefore, the price signal 𝜋𝑡 must be adjusted so that:

𝜋𝑡 =

{

𝑃 EG,consumpt
𝑡 (𝑐RTP𝑡 + 𝑐EG,addon), if 𝑃 EG,consumpt

𝑡 ≥ 0,
EG,consumpt RTP ∀𝑡 (4)
𝑃𝑡 𝑐𝑡 , otherwise.

6 
The sum of the total electricity consumption is represented by
𝑃 EG,consumpt
𝑡 . If this value is positive, electricity is drawn from the grid.

If it is negative, electricity is sold. When electricity is drawn, the time-
independent fixed energy price 𝑐EG,addon is added to the dynamic RTP
costs 𝑐RTP𝑡 . Since there is a MIC, the electricity purchased and sold
from/to the EG is not allowed to exceed it. 𝑃 EG,MIC ensures that the
consumption (positive and negative) does not exceed the maximum
installed capacity.

|PEG,consumpt
𝑡 | ≤ PEG,MIC, ∀𝑡 (5)

3.4. Battery degradation cost (BDC)

The model used in this paper to calculate battery degradation,
focuses only on cyclic degradation, as it is directly influenced by the
operation of the battery and thus directly influenced by additional
charge and discharge cycles in the optimized charging schedule. For
that reason we exclusively focus on the main factors that cause and/or
intensify battery cyclic degradation, such as battery temperature, C-
rate, SOC and DOD [47,52]. Therefore, we use the battery degradation
model from [9], which is developed empirically from laboratory exper-
iments. This model was adopted because, firstly, it takes into account
battery temperature, C-rate and SOC and it enables the assignment of
a monetary value to cyclic degradation. Secondly, this dynamic model
is based on commercially available lithium-ion cells for EVs and allows
for the estimation of battery degradation at each time step per kWh
exchanged.

However, a limitation of this model is that the battery temperature
is assumed to be based on the average daily ambient temperature. To
address this limitation, we propose a modification to the model where
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we calculate the battery temperature as a moving average of the actual
measured ambient temperature at each specific time step. This change
not only accounts for the fluctuations in air temperature throughout the
day, but also effectively smooths out any transient temperature spikes.
The result is a more accurate representation of the real-time ambient
temperature in the immediate vicinity of the battery (housed within
the EV), which increases the practicality of the model. In this modified
model, the degradation cost of the battery during each time step of V2G
utilization, is calculated as follows:

𝐵𝐷𝐶 =
𝑁
∑

𝑡=1

(

𝐶deg
𝑡,𝑖 𝐸exch

𝑡,𝑖

)

𝛥𝑡, ∀𝑡, 𝑖 (6)

where 𝐶deg
𝑡,𝑖 is equal to the battery degradation cost per time step

incurred by exchanging 1 kWh, 𝐸𝑒𝑥𝑐ℎ
𝑡,𝑖 is the net amount of electricity

exchanged (in kWh) by the 𝑖th EV at time 𝑡. The cost of degradation
is calculated at each time step. All equations refer to the time period
in which each individual EV is available. This is ensured by using a
Boolean variable indicating the availability of each EV. The calculation
of the degradation of the battery of each EV at time 𝑡 is given in the
model as follows:

𝐶deg
𝑡,𝑖 = 𝐶Bat

⎛

⎜

⎜

⎝

0.2
2 (𝑎c𝑡,𝑖)𝐸

EV,cap
𝑖 DOD

⎞

⎟

⎟

⎠

−1

∀𝑡, 𝑖 (7)

here the numerator 𝐶Bat represents the capital cost of the battery in
/kWh. Since capital costs are crucial for the evaluation of battery
egradation costs, we have adopted battery costs that are compat-
ble with prices from an analysis of industry technical reports and
nnouncements from [53]. The denominator provides the calculated
nergy throughput in kWh under certain charging and discharging
onditions at time step 𝑡 before the battery reaches EOL. 𝛼c𝑡,𝑖 represents
he battery degradation coefficient at every time step 𝑡 and for every
V, and 𝐸EV,cap is the maximum EV battery capacity of each EV. Since
cycle is defined as a complete sequence of charging and discharging,
e use a coefficient of 2 in Eq. (7). The battery degradation coefficient
𝑐
𝑡,𝑖 affected by the external stress factors can be defined accordingly as
adopted from [9]):
c
𝑡,𝑖

(

𝑇 Bat , 𝑃 EV,ch
𝑡,𝑖 , 𝑃 EV,dis

𝑡,𝑖

)

=
[

𝛽1(𝑇 Bat )3 + 𝛽2(𝑇 Bat )2 + 𝛽3𝑇
Bat+

𝛽4
] [

𝛽5𝐶𝑅EV
𝑖 + 𝛽6

] [

𝛽7 �̄�
EV
𝑖 + 𝛽8

]

(8)

In (8), 𝑇 Bat represents the battery temperature of the EV, 𝐶𝑅EV is
the C-rate of the EV charger, �̄�EV

𝑖 is the average SOC of the 𝑖th EV
during battery utilization, and 𝛽1→8 are fitting parameters. The fitting
parameters for the battery degradation model used in this work are
taken from [54]. In our approach, the average SOC during battery
operation is considered an external constraint, i.e., it influences the
optimization, but its impact cannot be minimized. Quantifying the
battery degradation cost incurred during each charging or discharging
operation, at each time step, allows the algorithm to determine whether
the EV should be charged or discharged. This depends on both the
Pareto weighting factor of the objective function and the amount of
charging or discharging involved. In this way, all costs and losses in-
curred during charging or discharging (including degradation costs and
efficiency losses) are balanced with the benefits of taking advantage of
fluctuating electricity prices and electricity demand of the company.
This enables the simulation of an optimal charging strategy for each
EV, based on the assigned Pareto weighting factor.

3.5. Electric vehicle (EV) modeling

EVs are modeled as multiple energy storage systems similar to bat-
tery energy storage (BES), but with limited availability and variability
in arrival and departure SOC at the company’s workplace. These are
based on technical limitations and practical considerations. The SOC

of each EVs is tracked exclusively during the time of presence at the T

7 
workplace (if the EV is not at the workplace, the SOC equals to 0). In
addition, the EVs differ to BES in terms of C-rate, battery degradation
variables and SOC limitations. The bidirectional power flow for V2G of
the EVs is provided from the time of arrival until the departure time of
the working day. The EV constraints are (9)–(15):

𝐸EV
𝑡,𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸EV,arr
𝑡,𝑖 , if 𝑡 = 𝑡arr

(

1 − 𝜂self𝛥𝑡
)

𝐸EV
𝑡−1,𝑖 + 𝛥𝑡

(

𝜂𝑖𝑃
EV,ch
𝑡,𝑖 −

𝑃EV,dis
𝑡,𝑖
𝜂𝑖

)

,

otherwise

(9)

𝑃 EV,ch
𝑡,𝑖 ≤ CREV,ch

𝑖 𝐸EV,cap
𝑖 𝑦EV,ch𝑡,𝑖 , ∀𝑡, 𝑖 (10)

EV,dis
𝑡,𝑖 ≤ CREV,dis

𝑖 𝐸EV,cap
𝑖 𝑦EV,dis𝑡,𝑖 , ∀𝑡, 𝑖 (11)

EV
𝑡,𝑖 = 𝐸EV,dep

𝑖 , if 𝑡 = 𝑡dep (12)

min𝐸EV,cap
𝑖 ≤ 𝐸EV

𝑡,𝑖 ≤ 𝜆max𝐸EV,cap
𝑖 , ∀𝑡, 𝑖 if 𝑦EV,avail𝑡,𝑖 = 1 (13)

EV,ch
𝑡,𝑖 + 𝑦EV,dis𝑡,𝑖 ≤ 1, ∀𝑡, 𝑖 (14)

REV,ch
𝑖 =

{

0.5 CREV,ch
𝑖 , if 𝐸EV

𝑡,𝑖 ≥ 0.8
CREV,ch

𝑖 , otherwise
(15)

q. (9) represents the stored energy of the EVs. When the EV arrives at
he workplace, the energy stored in the battery is measured by 𝐸EV,arr

𝑡,𝑖 .
hen the stored energy can be altered by adding the charged energy
nd subtracting the discharged energy, considering the efficiency of the
harger 𝜂𝑖 = 0.95 [30]. 𝐸EV,cap

𝑖 represents the maximum usable battery
apacity of the EV. The constraints (10) and (11) limit the charging
nd discharging power of the EVs, respectively. Eq. (12) defines the
equired energy that the EVs need to have at their departure time. To
void a higher degradation of the EV batteries and to allow a minimum
ange for unforeseen trips, the capacity limits are set in (13).

The limitation of the minimum SOC was set at 0.2 to provide EV
wners with confidence that their EV would retain enough charge for
hort trips during their shift. The study by Ghotge et al. [55] identified
hat good communication regarding the impact of V2G on batteries,
inancial compensation and real-time insight into SOC encouraged EV
wners to participate in V2G. Furthermore, a survey of 749 participants
n Germany revealed that EV owners are generally willing to participate
n V2G, provided that financial compensation is offered to offset any
esulting disadvantages [56]. Heuveln et al. [57] also demonstrated
hat the majority of EV owners accepted V2G on the condition of
inancial compensation. Eq. (14) ensures that charging and discharging
o not occur simultaneously.

In Eq. (15), the C-rate of the EVs is modified so that the C-rate for
he respective EV is reduced to 50% of its regular value when the SOC
f the EV is equal to or greater than 80%. Given the empirical evidence
nd the detailed analysis of [58], it is recommended to charge EVs
ithin the SOC of 20% to 80% to optimize energy efficiency and to
xtend battery life. However, to allow a slightly wider scope for DR,
e assume a range of 𝜆min = 0.2 and 𝜆max = 0.9.

. Input data

The technology and model parameters of this study are listed in

able 2.
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Table 2
Technology and model parameters.

Parameter Value

Number of EVs 10
Battery Arrival SOC 𝜇 = 0.5, 𝜎 = 0.15
Battery Departure SOC Arrival SOC + 𝛥 SOC (0, 5, 10, 15, 20, 25,

30%)

V2G window 6:00 a.m.–4:00 p.m. (Mon–Fri)
Efficiency EV charger 𝜂 0.95
Self-discharge 𝜂self 0.002%/h [59]
Time resolution 𝛥𝑡 15 min
Simulation Period 1 year
EOL battery At 80%
Battery Cost (e/kWh) 150
Pricing strategy RTP Germany
Electric load Industry (manufacturing)
Peak load without EVs 400 kW
Peak-to-average ratio 1.48
Maximum import capacity (MIC) 140% of peak load

4.1. Electricity grid prices

We consider the electricity purchase costs under the RTP tariff, a
prevalent offering by numerous electricity suppliers in today’s market.
The tariff comprises three main components: a time-based energy price
denoted as 𝑐RTP

𝑡 , a fixed price component 𝑐EG,addon, and a power price
omponent represented as 𝑐EG,buy

peak as illustrated in Eq. (3). For 𝑐RTP
𝑡 ,

e assume historical 15 min electricity prices of the year 2022, as
hown in Fig. A.1 (respectively Fig. A.2). The data were obtained from
he ENTSO-E transparency platform [60] using the Python package
lmada [61]. It was assumed there was a surcharge of 𝑐EG,addon of
42.57/MWh, which included e27.19/MWh for taxes and levies [62]
nd e15.38/MWh sale costs adopted from [63]. In addition, the com-
any was obliged to pay a power price 𝑐EG,buy

peak of e70/kW for the power
rawn from the energy supplier.

.2. Electric vehicle owner

For modeling the behavior of EV owners, the arrival and departure
ime and the arrival SOC and departure SOC are crucial. In this study,
e assume a scenario in which employees travel to the company daily
n weekdays (Monday to Friday) and leave after a fixed 10-hour shift.
his assumption is based on the company’s operational structure, which
uns exclusively on weekdays and applies the shift models commonly
sed in the manufacturing industry. Given the manufacturing nature of
he company, employees adhere to a strict clock-in, clock-out system,
locking in at 6:00 a.m. and clocking out at 4:00 p.m. Accordingly, the
rrival times of the employees are tightly clustered around the start
f their shift, rendering a statistical distribution unnecessary in this
ontext.

For the EVs’ initial SOC upon arrival, we assume a normal distri-
ution. This approach is consistent with existing V2G research prac-
ices [64]. In this study, the SOC of the EVs is assigned randomly
or each working day with a truncated normal probability distribution
mean SOC 𝜇 = 0.5, standard deviation 𝜎 = 0.15). This truncation
revents the selection of values greater or equal to 3𝜎, ensuring realistic
OC limits. The departure SOC of the EVs is increased to the arrival
OC as the starting point by the amount of free charge received. This
mount of free charging is referred to as 𝛥 SOC in this paper from here
n in. Therefore, 𝛥 SOC 10% indicates that the EV owner receives a
hare equal to 10% of the capacity of their battery. For example, if the
attery has a capacity of 100 kWh, the owner is entitled to 10 kWh
f free electricity in return for making their battery available to the
ompany for a single workday.
8 
.3. EV type

The technical restrictions of the EVs (battery capacity and C-rate)
re decisive for the optimization. Table 3 provides an overview of
he electrical characteristics of the EVs utilized in the simulation. For
he simulation, 10 different EVs were assumed (each EV type selected
nce from Table 3) to make comparisons among EVs regarding the
mpact of battery capacity and C-rate on battery degradation and the
enefits to the company from V2G. These EVs are either currently
ndergoing testing in pilot projects or have the capability to adopt
2G technology in the future [65]. To ensure a thorough investigation,
e have included EVs with small, medium and large battery sizes and
-rates in our simulations.

.4. Company load profile

For the analyses, we used the historically measured electricity de-
and of the manufacturing company from southern Germany, which
as available to us in 15 min resolution (see in heatmap Fig. A.3).
ince each EV is simulated over the entire period of one year, we
onsider 10 EVs to keep the calculation time within a feasible range.
o simulate the impact of the 10 EVs in a smaller company setting, the

oad profile was scaled down from an initial peak demand of 6840 kW
o 400 kW. This modification resulted in a reduction of the annual
lectricity consumption from 36 GWh/yr to 2.10 GWh/yr, reflecting
he scenario of a company with 10 EVs in its parking lot. Accordingly,
he MIC was also scaled down to the same extent. The average weekly
rofile with a 95% confidence interval post-scaling is shown in Fig. A.4.

.5. Weather data

For the battery degradation model, weather data were used based
n historical dry bulb air temperature data from the nearest weather
tation to the company, as provided by German Weather Service. For
easons of anonymity, the geographical coordinates are not given. The
easured temperature used for the simulation is shown in Fig. A.5.

. Scenario setting

We modeled three cases: A non-optimized reference case (REF),
n optimized SC case (1), and an optimized V2G case (2). The case
efinition, with the different characteristics, is summarized in Table 4.
o evaluate the potential benefits of the proposed method, V2G is not
onsidered in the first two cases. In the REF case, a reference scenario
s simulated to find the net electricity costs of the company without
ny EVs. This scenario represents the non-optimized status quo. The
lectricity demand is only covered by the EG. In Case 1, SC of EVs
s simulated. The EVs can only be charged. The arrival and departure
imes, as well as the SOCs of the EVs are the same for all scenarios to
reate comparability (the seed function is used). Case 1 is used as a
enchmark to study the impact of V2G on the company’s profitability.

The battery degradation costs are calculated as shown in Sec-
ion 3.4, except that there is no discharging of the EVs. In Case 2, the
Vs are not considered as a load that needs to be charged, instead they
re used as energy storage. Case 2 examines the costs of the company
nd the costs due to battery degradation. In this course, different
evels of free charging to the EV owners will be investigated (these are
lso simulated in Case 1 for comparability). Moreover, an additional
nalytical consideration involves the analysis of the comparability of
he different EVs in terms of profit per EV depending on net capacity
nd C-rate for the company and for the EV owners, as well as the
ifferent levels of battery degradation.
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Table 3
Electrical characteristics of EVs used for the simulation. For DC charging, the calculated average charging speeds from [66] were adopted, since
assuming the maximum DC charging speed is not feasible.

EV type Net battery AC charging Average DC charging C-rate
capacity [kWh] power [kW] power [kW] (AC/DC)

Audi Q4 e-tron 76.6 11 103 0.14/1.34
Citroën C-Zero 14.5 3.7 30 0.26/2.06
Ford F-150 lightning 125 19.2 127.8 0.15/1.02
Honda e 28.5 6.6 32 0.23/1.12
Kia EV6 74 11 200 0.15/2.70
Mercedes 350 EQE 89 22 120 0.25/1.35
Mitsubishi outlander (PHEV) 12 2.3 30 0.19/2.50
Nissan leaf e+ 59 6.6 44 0.11/0.75
Volvo EX90 107 11 150 0.10/1.40
VW ID 5 77 11 103 0.14/1.34
Table 4
Simulation case studies.

Case EV fleet DR V2G Battery degradation

REF – − – –
Case 1 ✓ ✓ – ✓

Case 2 ✓ ✓ ✓ ✓

Fig. 2. Illustration of the aggregated SOC changes of the EVs when V2G is enabled.
Pareto value of 0.5, AC charging, and 𝛥 SOC 10%.

6. Results and discussion

In the following section, the results of each case study are described
individually and discussed in the summary section. First, a temporal
analysis was performed to identify the week with the most represen-
tative variance in the company’s load profile among the 52 weeks of
the evaluation period. This week was then selected to illustrate the
optimization strategies for V2G-cases. Using this specific week, Fig. 2
shows the aggregated SOC for all 10 EVs (blue line) and illustrates how
the SOC changes as a function of the objective function. During the
availability periods of the EVs, the optimization algorithm manipulates
the charging/discharging of the batteries in the EVs, also depending on
the battery degradation model applied (if the EVs are not available, the
SOC is 0).

6.1. Reference case (REF) and smart charging (Case 1)

An overview of the economic and energy impacts stemming from
the REF Case and Case 1 are presented in Table A.1. It highlights
important factors such as total electrical costs for the company and
aggregate degradation costs of EVs. ‘‘AC’’ and ‘‘DC’’ indicate the type
of current used for charging and discharging EVs, 𝛥 SOC denotes the
percentage of free charging of EVs. It can be seen, as expected, that
the total annual costs increased in all scenarios of Case 1 compared
to the REF case without EVs, since the EVs are only charged and not
discharged. This cost increase is observed for both AC and DC charging.
Noticeably, degradation costs do not exist in the REF Case, but increase
with higher 𝛥 SOC in the Case 1 scenarios. Interestingly, degradation
9 
costs are generally higher for DC charging than for AC. At the same SOC
level, the degradation costs of DC are 75.28%, 71.53%, 70.44%, and
65.66% higher than AC charging, respectively, with the rate of change
decreasing slightly as the 𝛥 SOC level increases. This effect is caused
by the higher SOC required on departure, which limits the previous
optimization capabilities after arrival until departure.

6.2. V2G scenarios (case 2)

In both Case 1 and Case 2, the peak load on the grid remains
unchanged compared to the REF scenario. As a result, the MIC is not
exceeded. This illustrates that despite an increased total load due to
EVs, an increase in peak load can be prevented by an intelligent energy
system. Considering that the focus of this work is to analyze V2G in
a non-residential DR scenario, the multi-objective optimization used a
Pareto analysis to investigate the optimal trade-off between company
profit and battery degradation.

6.2.1. Pareto analysis
The company’s profit from V2G is the profit for the company derived

from utilizing the EVs’ batteries compared to the REF Case without EVs.
Based on degradation, the company’s profit from V2G and the profit of
the 10 EV owners for the simulated period are compared for 11 values
of 𝛼, 0 to 1 in increments of 0.1. To calculate the combined net profit
of EV owners, a home tariff of e0.39/kWh was used as the reference
price for each kWh provided to the EVs, creating a uniform basis for
the profit calculation. The standard home tariff in Germany ranged
between e0.37 to 0.40/kWh according to [62] in 2022. The Pareto
front of the analysis is shown in Fig. 3 as a function of profit for the
company and maximum degradation (blue) and from the perspective
of aggregate profit for EV owners (red). The sum of these two profits
(green) represents the most beneficial economic outcome, i.e., the sum
of the net profit for the EV owners and the profit for the company
from V2G. In the case where 𝛼 = 0, every opportunity to reduce the
company’s energy costs is fully exploited. In contrast, when 𝛼 is set to
1, the EVs are charged in an optimized manner that minimizes battery
degradation from the arrival SOC to the departure SOC level, i.e., when
the degradation per charged kWh is lowest. Thus, the EVs are charged
as a function of optimal temperature.

This means that V2G does not occur, as EVs will not perform any
discharge activities. The results indicate that as the Pareto weighting is
shifted further towards cost minimization for the company, there is a
noticeable increase in battery usage and, consequently, a higher degree
of degradation of the EV batteries (decreasing 𝛼-value). This leads to
a reduction in the net profit for the EV owners due to the increased
degradation costs. In the AC charging scenario, a profit for the company
is not realized until the 𝛼-value approaches 0.6 (at approximately 0.58),
while in the DC charging scenario, a profit is realized at an 𝛼-value of
0.7. Interestingly, the net profit for EV owners varies more with DC
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Fig. 3. Pareto analysis for the optimized scheduling model for the 10 EVs for AC
charging (a) and DC charging (b) at an 8% 𝛥 SOC level with 𝛼 = 0 minimizing energy
cost, 𝛼 = 1 minimizing degradation.

charging (−e2000 to e5581), while it has a smaller range with AC
charging (e3240 to e5714). This indicates a differential sensitivity of
profitability with respect to the chosen charging method. The optimal
profitability, found at an 𝛼-value of 0.4 in the DC charging scenario, is
a value of e5683 and at a 𝛼-value of 0.5 in the AC charging scenario
(e4586).

Finally, it can be concluded that both the company and the EV
owners can benefit from this concept, even if the company provides
free charging to the EV owners.

6.2.2. Sensitivity analysis
The results of the simulations reveal some important observations

and analytical insights about the sensitivity of the company’s total
annual cost to different 𝛥 SOCs provided to the EV owners for both
AC and DC charging scenarios, as seen in Fig. 4. The observed results
indicate that there is a specific threshold for changes in 𝛥 SOC. When
this threshold is exceeded, the company’s annual cost surpasses the
company’s annual cost in the REF Case. For the AC charging system,
the company’s annualized cost exceeds the REF cost (e657,731) when
the 𝛥 SOC reaches 10%. The company’s annualized cost at this point is
e657,892, slightly higher than in the REF Case. For the DC charging
system, this threshold is at 20% 𝛥 SOC, where the company’s annu-
alized cost is e659,811. Furthermore, it is evident that for different
𝛥 SOC values, the company’s total annualized costs for DC charging
scenarios are consistently lower than those for AC scenarios, with costs
between 0.33% and 0.59% (e2173 to e3910) lower for DC scenarios.

The discrepancy in 𝛥 SOC thresholds between the AC and DC
charging systems can be attributed to the DC system’s ability to charge
and discharge at high C-rates, enabling more rapid and responsive
utilization of EV battery capacity. This allows the company to exploit
real-time electricity prices more effectively and achieve a higher thresh-
old 𝛥 SOC for the DC system as compared to the AC system. In terms of
degradation costs, it appears that the proportion of degradation costs
for the EV owners relative to the company’s annual costs is higher in DC
10 
Fig. 4. Sensitivity analysis of the company’s annualized costs with respect to different
levels of 𝛥 SOC for AC and DC charging and for the REF Case.

charging scenarios compared to AC charging scenarios. Specifically, the
ratio of degradation costs to total annual costs in AC charging scenarios
remains relatively stable, increasing by approximately 3.17% as the 𝛥
SOC increases from 0% to 25%. In contrast, the DC charging scenarios
show a more pronounced increase in this percentage, increasing by
approximately 13.95% as the 𝛥 SOC increases from 0% to 25%. The
degradation costs in the DC scenarios are consistently higher than in
the AC scenarios, with differences to AC costs ranging from e2058 to
e2796, an increase of 96% to 127%.

Fig. 5 shows the profit dynamics for both the company and the
EV owners at different 𝛥 SOC in two different charging scenarios, AC
and DC charging with a benchmark price if EV owners had charged
their EV at home at a price of e0.39/kWh. Battery degradation costs
are already factored into the EV owners’ profit. Fig. 5 illustrates the
transition points of profitability for both parties, with the company
initially making high profits at lower 𝛥 SOC values that turn into
losses as the 𝛥 SOC increases. Conversely, the EV owners will transition
from losses to profits. For AC charging, a profit transition for the EV
owners occurs between 2.5% and 5% 𝛥 SOC. For DC charging, a profit
transition for the EV owners occurs between 5% and 7.5% 𝛥 SOC due
to higher battery degradation costs.

In general, DC charging brings the company a higher profit com-
pared to AC charging even if the 𝛥 SOC increases. The green highlighted
zone characterizes the sector where both stakeholders benefit. In the
orange areas, only one stakeholder benefits, and in the red area,
none. There is a clear linear inverse relationship, as the profit for the
company decreases with increasing 𝛥 SOC, the profit for the EV owners
increases. Finally, Fig. 5 shows that DC charging is more beneficial to
the company, while AC charging is more beneficial to EV owners. In
the case of AC charging, it is noticeable that this method cannot fully
utilize the high battery capacities of some EVs due to the relatively low
C-rate. EV owners benefit more from this scenario due to the lower rate
of degradation incurred. Conversely, the advantages of DC charging for
the company are that the EV batteries can be better utilized due to
the higher C-rate. With DC charging, EV owners incur higher costs for
battery degradation and this results in a lower profit for EV owners.

6.3. EV characteristic analysis

Fig. 6 shows the results of the EV profit comparison over one year
for both AC (top) and DC charging (bottom) scenarios for the company
and EV owners (including degradation). The V2G scenarios are divided
into five different cases each, providing free 𝛥 SOC to the EVs from 0%
to 20% (in 5% increments).

The AC charging scenarios show a significant decrease in the com-
pany’s profitability for all EV models as the percentage of 𝛥 SOC
increases. In general, the transition from profitability to unprofitabil-
ity in a V2G environment varies significantly across EV models. The
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Fig. 5. Trade-off between the company and the aggregated profits of the EV owners
over different 𝛥 SOC under two charging scenarios — AC and DC. A benchmark price
of e0.39/kWh is assumed for charging EVs at home.

majority of the EVs studied enter the loss zone (from the point of view
of the company) at 10% to 15% 𝛥 SOC (and between 15% and 20% for
DC scenarios).

In this context, two factors play a crucial role. First, the company
has to provide more free electricity for larger batteries, which leads to
lower profitability for the company. In addition, the difference between
AC and DC charging systems is striking. AC charging cannot fully utilize
the high battery capacities of some EVs, such as the Volvo, which has
a 107 kWh battery but only a limited AC charging capacity of 11 kW,
constraining the company’s ability to fully exploit the battery for DR
purposes and allowing EV owners to benefit more from a higher 𝛥
SOC. DC charging, on the other hand, allows the company to better
utilize these large battery capacities in a working day, as the C-rate is
increased substantially.

Furthermore, increasing 𝛥 SOC brings additional constraints on the
optimization process, as higher departure SOCs result in a shorter time
window for implementing DSM strategies. These constraints inevitably
reduce the profitability of the company, which underscores the im-
portance of addressing this dynamic. As a result, EVs with smaller
batteries tend to be more resilient to degradation in AC scenarios than
in DC scenarios, as the limited C-rate prevents the batteries from being
fully utilized. Larger batteries receive more free charging, resulting in
lower profitability for the company, while the limited C-rate has a
lower economic impact on the smaller batteries than on the larger ones,
reducing the extent of degradation compared to the larger batteries. In
fact, all EV owners in AC scenarios make a profit at a 𝛥 SOC level of 5%
and in DC scenarios at a 𝛥 SOC level of 10% despite battery degradation
(see Fig. A.6).

The economics of AC charging show a recognizable pattern where
EV owners realize significant benefits from increased battery capacity.
The positive correlation between battery size and profit is evident,
demonstrating that larger battery capacity leads to higher financial
gains for EV owners. This effect is attributed to the reduced impact of
low C-rate on battery degradation. The Kia EV6, which has the highest
DC C-rate at 2.70, transitions quite dramatically into unprofitability.
The Mitsubishi Outlander shows the same effect, with a high DC C-rate
of 2.5, but a modest net battery capacity of 12 kWh, demonstrating that
a high C-rate does not exempt a vehicle from profitability risks, even if
the battery capacity is low.

In addition, the results highlight the limitations associated with
EVs with smaller batteries, such as models like the Citroen C Zero
and Mitsubishi Outlander. These EVs face a double challenge. Firstly,
their limited battery capacities limit the company’s profit potential,
as the low level of energy storage does not allow for significant eco-
nomic profits. Secondly, owners of such vehicles endure a significant
impact from high degradation, especially in DC charging scenarios.
Fig. 7 shows a comparative boxplot analysis of the distribution of full
cycles on the company site for each of the 10 different EV models in
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the simulated year, considering variations in the 𝛥 SOC in both AC
and DC charging scenarios. Thus, DC charging reveals a remarkable
finding which suggests that a significantly increased C-rate can also
be profitable for EV owners. This peculiarity arises from the ability of
a higher C-rate to reduce the number of cycles, thereby preventing a
substantial escalation in battery degradation.

When comparing the cycle count of the EVs in AC and DC scenarios,
we can observe that the range of cycle count in the different 𝛥 SOC
scenarios is significantly smaller for AC charging compared to DC
charging. This implies that the influence of 𝛥 SOC levels on cycle counts
is less pronounced in AC charging than in DC charging. Furthermore,
it is evident that most EVs have significantly more cycles with DC
charging than with AC charging (up to +128%). Notably, the Kia
EV6, Mercedes 350 EQE, Citroen C Zero, and Mitsubishi Outlander are
exceptions, showing a decrease in cycle count from AC to DC charging.
These are primarily the EVs with the highest C-rates (see Table 3).

It can be deduced that achieving optimal results for companies and
EV owners depends on a well-balanced combination of battery capacity
and C-rate. The careful balancing of these parameters is crucial to cre-
ate a synergy that not only maximizes the profitability for individual EV
owners, but also optimizes the company’s economical interests in the
context of V2G implementation. Fig. 8 shows a profitability matrix that
provides insights into the recommended 𝛥 SOC variations considering
the interplay between C-rate and battery capacity of the EVs from the
optimized scenarios. The matrix identifies an area of mutual benefit,
revealing optimal charging strategies that increase profitability for both
stakeholders involved. As the C-rate and battery capacity vary, the
figure highlights the corresponding 𝛥 SOC values that contribute to an
economically beneficial scenario.

6.4. Summary discussion

When analyzing all cases and scenarios, the following results are
striking:

• Cost and battery degradation analysis: When analyzing the costs
and degradation of the batteries, it becomes evident that the
sensitivity of the company’s total annual costs relative to changes
in the 𝛥 SOC is a decisive factor. The choice between DC and
AC charging plays a critical role in shaping these costs. The
consistently lower cost profile of DC charging, due to its ability to
provide a high C-rate during charging and discharging, underlines
its economic advantages over AC charging. The company’s total
financial profits of EVs for DC charging ranged from e8838.96
(𝛥 SOC 0%) to −e1438.14 (𝛥 SOC 20%). In contrast, the total
profit for AC charging had a narrower range, ranging only from
e5467.37 to −e5145. The slightly higher degradation costs asso-
ciated with DC charging are outweighed by the economic benefits,
making it a more financially rewarding option for the company.
Given the investment capital required, most companies choose
not to establish a DC charging infrastructure in favor of the more
cost-effective AC charging infrastructure. However, this situation
underlines the importance of our analysis, which highlighted the
benefits of DC charging. Although AC infrastructure dominates
due to its lower initial costs, our analysis shows that despite
the higher initial investment, the strategic implementation of DC
charging stations can generate substantial returns for companies.
This finding could be a compelling incentive for companies to
strategically invest in DC charging infrastructure in the context
of V2G integration.
Furthermore, the linear inverse relationship between the com-
pany’s profits and EV owners’ profits as 𝛥 SOC increases shows
an interesting but small area of mutual benefit for both charging
types.
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Fig. 6. Analysis of the financial benefits for the company and the owner of the EVs as a function of the 𝛥 SOC level for the AC scenarios (a) and DC scenarios (b). The company’s
profits for each EV are hatched.
Fig. 7. Comparative boxplot analysis of the battery cycles of the 10 EVs under AC and
DC charging. Each boxplot shows the distribution of full cycles for each of the 10 EV
models, considering the different 𝛥 SOC levels.

• Pareto front analysis: Achieving a delicate balance between com-
pany profit and battery degradation proved to be a key factor
in optimizing profitability for both the company and EV owners.
The Pareto analysis highlighted the importance of an optimal 𝛼-
value, identified as 0.4 for DC charging scenarios and 0.5 for
AC charging scenarios, and highlights an economic trade-off.
This trade-off is an essential part of the sustainable integration
of V2G technologies and emphasizes the balance between the
profitability of the company and the longevity of the EV batteries.
The calculated costs of the battery degradation model per kWh
12 
Fig. 8. Profitability matrix for recommended 𝛥 SOC levels based on C-rate and battery
capacity of EVs, revealing a mutually beneficial scenario.

exchanged within certain ranges for AC and DC charging further
emphasize the economic considerations. These ranges (e0.0176–
e0.026/kWh for AC and e0.028–e0.0561/kWh for DC) provide
decision makers with tangible metrics that provide insight into
the cost dynamics of each charging scenario.
This differentiated understanding is essential to manage the com-
plexity of V2G services and make informed decisions that are in
line with both economic and sustainability goals.

• EV characteristic and model-specific analysis: AC Charging: For
AC charging, high battery capacities are not necessarily good
for company profits if the C-rate is low. The company has to
provide more free electricity as the 𝛥 SOC increases, but cannot
fully utilize the high battery capacities. EV owners benefit more
from lower battery degradation compared to the DC charging
scenario. The company could make profits of e110.5 to e1037
per year depending on the vehicle model, assuming there is no
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free charging for EVs (𝛥 SOC 0%). The loss range in a scenario
with 20% free charging (𝛥 SOC of 20%) is between −e74.5 and
−e975 per EV/year for the company. Owners of EVs, especially
larger EVs, benefited more from AC charging resulting in a range
of −e44 to −e400.6 per year after accounting for degradation
costs in scenarios without free charging depending on the vehicle
type. With a 𝛥 SOC of 20%, EV owners generated profits of
e190.22 to e2032 per year.
DC charging: For DC charging, larger battery capacities provide
higher initial profitability for the company and maintain prof-
itability at higher 𝛥 SOC compared to AC charging. Conversely,
the analysis shows that EVs with small battery capacities not only
generate lower profits for the company, but also have limited
flexibility to meet the company’s electricity needs. This result
raises the question of the feasibility of investing in charging
infrastructure for small battery capacities. The company recorded
higher profits in DC charging than in AC charging across each
EV model, ranging from e135.2 to e2069 per year without free
charging to profits of −e468 to e92.3 per year in a scenario with
20% free charging. For DC charging, owners benefited to a lesser
extent than for AC charging and a higher C-rate proved beneficial
as it mitigated battery degradation by reducing the number of
cycles for several EV types. In this context, EV owners suffered
losses of −e63.7 to −e1117.8 when there was no free charging
available, and profits of e158.24 to e1559 with a 𝛥 SOC of 20%.

• Cycle count: Most EVs have a higher cycle count for DC charging
than AC charging, and the optimal outcome for companies and EV
owners depends on a delicate balance between battery capacity
and C-rate. EVs with small batteries not only generate signifi-
cantly lower company profits but also endure high degradation,
especially during DC charging. A considerably increased C-rate
can be worthwhile for EV owners, as it prevents a significant
increase in battery degradation by reducing the number of cycles
(depending on fluctuations in the RTP as well as the battery
degradation model), which is also a strategic consideration.

7. Conclusions

This study presents a comprehensive analysis of the integration of
an EV fleet into an industrial smart grid, focusing on the optimization of
operational flexibility, which considers both the reduction of electricity
costs for the company and the degradation of individual EV batteries.
The trade-offs between the company and EV owners are solved through
multi-objective optimization. By applying the proposed approach, some
noteworthy findings can be drawn, which are summarized below:

• The inherent trade-off holds the potential for mutual benefit be-
tween the two stakeholders (company and EV owners). Although
there are no mutual losses, the area of mutual benefit is limited.
The limited range of mutual benefit extends from a 𝛥 SOC of 3%
to 10% of the EV battery capacity for AC charging and from 6%
to 17% for DC charging for providing the EV battery. Without DR
optimization, one stakeholder could easily make a loss.

• Optimal Pareto 𝛼-values (𝛼 = 0.4 for DC, 𝛼 = 0.5 for AC) highlight
an economic trade-off that is beneficial for both stakeholders.
In these scenarios, minimizing energy costs to the company is
weighted more evenly than minimizing battery degradation.

• DC charging was significantly more profitable and generated
higher profits for the company than AC charging, as the battery
capacity of larger EVs was used more efficiently due to the higher
C-rate. Thus, DC charging proved to be 257.45% to 38.1% more
profitable than AC charging, depending on the amount of free
charging (𝛥 SOC).
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Fig. A.1. Day-ahead market prices for the German electricity market of the year 2022.

Overall, our study emphasizes the significant potential for V2G to
reduce costs for employers while also providing benefits to EV owners,
who are financially compensated for the increased battery degradation
that occurs as a result of providing EVs for V2G. The results show that
the profitability of EV owners varies widely, underlining the need for
an equitable pricing strategy. EV owners’ profit (the free or subsidized
charging minus the degradation cost) should be proportionate to the
value their EVs contribute to the operational and financial levels of the
company. While the current remuneration methodology is a first step
towards mutual profitability, it is not sufficient to develop a fair pricing
paradigm that considers the heterogeneity of the value contribution of
different EVs. This requires a forward-looking pricing mechanism that
aligns EV owners’ profit with the company’s operational and financial
benefits, promoting a harmonized and equitable framework for V2G
integration.
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Fig. A.2. Historical 15 min electricity prices of the German electricity market of the
year 2022.

Fig. A.3. Heatmap of the load profile from the manufacturing company.

Fig. A.4. Company load demand for the average week and 95% confidence interval.

Fig. A.5. Measured ambient air temperature from the nearest weather station to the
company.
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Fig. A.6. Analysis of the company profit per full cycle of the 10 EV models under
different 𝛥 SOC (0 to 25%) for AC and DC charging scenarios.

Table A.1
Cost and energy overview of the REF Case and Case 1 scenarios.

Case description Total annualized
company costs [e]

Aggregated degradation
costs [e]

REF: no EVs 657,731 0
Case 1: AC, 5% 𝛥 SOC 660,394 178
Case 1: AC, 10% 𝛥 SOC 662,222 404
Case 1: AC, 15% 𝛥 SOC 664,444 582
Case 1: AC, 20% 𝛥 SOC 669,831 792
Case 1: AC, 25% 𝛥 SOC 677,306 938
Case 1: AC, 30% 𝛥 SOC 679,545 1047
Case 1: DC, 5% 𝛥 SOC 659,621 312
Case 1: DC, 10% 𝛥 SOC 662,557 693
Case 1: DC, 15% 𝛥 SOC 664,738 992
Case 1: DC, 20% 𝛥 SOC 666,980 1312
Case 1: DC, 25% 𝛥 SOC 668,127 1463
Case 1: DC, 30% 𝛥 SOC 670,024 1700
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