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Cyber Security Framework for Vehicular Network
based on a Hierarchical Game

Hichem Sedjelmaci, Member, IEEE, Imane Horiya Brahmi, Member, IEEE, Nirwan Ansari, Fellow, IEEE,
and Mubashir Husain Rehmani, Senior Member, IEEE

Abstract—The growth of electronic devices in connected vehicles and their connections to the untrusted network, present
unprecedented exposure to attacks. Therefore, a reliable and efficient cyber security framework is mandatory to protect vehicular
networks against the cyber attackers. Thereby, we propose a cyber defense framework based on a hierarchical cooperative game to
secure legitimate vehicles from attacks. In the proposed hierarchical game, there are two kinds of players, the head agent and
secondary agents that cooperate between each other to detect, predict and react efficiently against suspected attacks. The Intrusion
Detection System (IDS), Intrusion Prediction System (IPS), and Intrusion Reaction System (IRS) represent the secondary players,
where their strategies are to carry out the detection, prediction and reaction actions, respectively. The Intrusion Decision Agent (IDA) is
the head player and is responsible for making decisions in launching the strategies of IDS, IPS and IRS players. The secondary and
head agents are to collaborate in order to decrease the false positive and false negative rates, while minimizing the processing delay
and overhead. Numerical results show that, our cyber defense game requires low communications overhead and low delay to achieve
low false positive and false negative rates as compared to the current intrusion detection and prediction frameworks.

Index Terms—VANET, Hierarchical game model, Cyber security framework, Delay, Overhead.

F

1 INTRODUCTION

Vehicular ad hoc network (VANET) is an important component of
the Intelligent Transportation System (ITS), due to their important
role in making the road safer and the traveling experience more
pleasant. In VANET, the car is considered as a smart mobile
node equipped with diverse communication technologies such as
802.11p and cellular networks such as 3G/4G to communicate
efficiently with its neighboring cars and the external network,
e.g. Internet [1]. Recently, vehicular networks have become the
subject of a variety of cyber threats, which can be classified as
attacks that target the integrity, availability, and confidentiality
of a vehicle [2], [3]. The threats that target the integrity aim to
inject fake data, and force the infected vehicles to broadcast false
information and drop all the packets that circulate through their
radio range. The main purposes of availability attacks such as
Denial of Service (DoS) attacks is to exhaust the bandwidth, jam
the wireless communications, and disturb network operations [4].
The passive attack or the cyber threat that targets confidentiality,
probes the most attractive node (e.g., cluster head) and the most
sensitive data by launching its promiscuous mode, i.e., overhearing
all the traffic that circulates through its radio range. Afterward, the
attacker switches from a passive mode to an active mode in order
to launch a cyber-attack, e.g., dropping packets and spreading false
information. Launching these attacks against the vehicle nodes
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is considered harder as compared to the traditional IT network,
because of the critical organs of a vehicle that could be infected
by a malicious software are massively interconnected black box
systems. Furthermore, several research scientists in industry and
academia have shown that the vehicle node could be hacked by an
external hacker, by launching an attack from a remote device and
executing locally a malicious software in the infected vehicle’s
hardware [5], [6]. Therefore, a reliable and efficient cyber security
framework is mandatory to deter external and internal attacks.

The current cyber security framework developed for VANET
is either based on Intrusion Detection System (IDS) or Intrusion
Prediction System (IPS) [3], [5] [7], [8], [9], [10], [11], [12], [13].
The authors in [12], [13], [14] proposed a new security framework
for vehicular networks, where the IDS and IPS are launched
simultaneously to detect the current and future misbehavior of
attackers. According to their simulation results, they proved that
when the number of vehicles is lower than 300 nodes, their frame-
work exhibits a high detection with a low overhead. However,
the security framework requires a high communications overhead
to detect and predict accurately the misbehaviors when there
are more than 300 nodes. This communication overhead could
affect the V2X (vehicle to vehicle and vehicle to infrastructure)
communications; therefore, the safety of passengers and cars could
be threatened [15]. Moreover, the decision delay for an IDS
and IPS agents to react against cyber attacks could degrade the
performances of the proposed security framework and affect the
V2X communications. When the decision delay is low, the security
framework will not have enough time to detect and predict the
current and future misbehaviors of cyber-attacks. On the other
hand, when this delay is high, the security framework exhibits
a high overhead. To overcome these issues and detect almost all
attacks that infect the legitimate vehicles, we propose a Cyber
Defense Game (CDG) for VANET.

CDG aims to minimize the delay and communication over-
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head, while reducing the false positive and false negative rates.
The CDG framework is based on multiple security agents: IDS,
IPS and Intrusion Reaction System (IRS) to detect, predict, and
react promptly against attacks. The IRS agent triggers different
reactions, which depend on the type of the attack before a critical
damage occurs (e.g., vehicles crash). Our security framework
relies on a hierarchical cooperative game to activate optimally
these security agents, i.e., finding a tradeoff between the network
metrics (overhead and delay) and security metrics (false positive
and false negative) in the activation of IDS, IPS and IRS. In the
hierarchical cooperative game, there are two types of players, the
secondary agents, which are the IDS, IPS and IRS, and the head
agent, which is the Intrusion Decision Agent (IDA). The role of
IDA is to launch the secondary agents while maintaining a tradeoff
between the network and security metrics. To the best of our
knowledge, this is the first cyber security framework that takes
into account of the delay and overhead as the main parameters
for influencing the decision-making taken by the head agent IDA.
The decision provided by IDA is to request the secondary agents
to launch the detection, prediction and/or reaction strategies. The
optimal solution is attained when the secondary players launch the
strategies that the head player requests. To validate the proposed
CDG, we have conducted numerous simulation scenarios using
NS-3 (Network Simulator 3). The achieved performances are
promising in the sense that our security framework achieves low
false positive and low negative rates as compared to the existing
intrusion detection and prediction frameworks for VANETs. These
results are achieved for a large-scale vehicular network, where
CDG exhibits a low overhead and low delay.

The rest of this paper is structured as follows: in Section 2, we
highlight the most notable research papers that have motivated our
work and in Section 3, we present the cyber defense architecture
for the vehicular network. In Section 4, we describe our hierar-
chical security game by detailing the security mathematical model
and the corresponding proofs. In Section 5, we assess CDG and
present/discuss the obtained simulation results. Finally, we present
our conclusions and highlight some future works in Section 6.

2 RELATED WORK
IDS is classified into two classes: (i) Network IDS (N-IDS)
monitors the flux of data originated from the antenna of the vehicle
and focuses on the detection of remotely instigated external
attacks [16], which target the critical organs of the vehicle (e.g.,
decision pilot, radar, and camera). (ii) Host IDS (H-IDS) analyzes
the behavior of hardware upon which the IDS is activated and
focuses on the detection of the malicious code that runs locally
in the hardware. Both N-IDS and H-IDS have the capability to
detect only the current misbehavior of the attacker or the current
execution of malicious software that runs within the infected
vehicle [17]. Furthermore, to detect the future misbehavior of an
attacker, the IPS agent is used to monitor and track the future
malicious patterns of attackers.

Several previous works have addressed the issue of intrusion
detection and prevention in vehicular networks [3], [5] [7], [8],
[9], [10], [11], [12], [13]. The authors in these works proposed
detection and prediction frameworks to detect and predict re-
spectively the current and future misbehavior of intruders. Their
frameworks are based on a distributed, centralized or hybrid IDS
(IPS) to protect the vehicular networks against the attacker or a
group of attackers. The authors in [3], [7] proposed collaborative

intrusion detection frameworks, where the IDS agent is activated
at each vehicle to monitor locally and globally the behavior of
the legitimate vehicle and the behaviors of the suspected vehicle’s
neighbors, respectively. They focused on the protection of VANET
against DoS attacks, such as black hole and selective forwarding
threats and false alert generation attacks. According to their simu-
lation results, an important number of internal attacks are detected
with a low false positive rate. However, when collaborative cyber-
attacks are launched simultaneously, the detection rate decreases
exponentially, especially when the number of attacks increases.
Yu et al. [8] aimed to protect the vehicular networks against the
most lethal threat, Sybil attack. In their research results, they found
that the signal strength is the main feature required to detect this
attack. They developed a signature-based detection technique to
monitor the malicious signal that the Sybil node generates. In
the simulation results, they proved that, almost all Sybil nodes
are detected. However, their solution requires a certain delay to
detect the attack since the IDS must parse all the signatures
before making a decision. In [5], a host-based IDS solution is
developed to protect the VANET against false data injection and
Sybil attacks. To detect these attacks, the IDS uses a statistical
technique to model a normal pattern of the legitimate vehicle and
hence the behavior of a vehicle that deviates from this normal
pattern is categorized as an infected node. In the simulation results,
the authors proved that almost all attacks are detected. However,
their solution requires a certain decision delay to react against
the detected attack as each host IDS waits for the decision of the
other IDS neighbors to make its own decision, e.g., stores the
infected vehicle in the blacklist. In [9], a new intrusion detection
framework, named Rule-Enforced Security Technique (REST-Net)
is developed to secure the vehicular networks against the attacks
that alter the beacons messages and/or send fake messages. Their
IDS solution is based on a plausibility checks approach to verify if
the broadcasted messages are fake or not. This approach is based
on a couple of dynamic rules, where each rule could contain a
set of security thresholds. The threshold is updated over time,
and depends on the attack that is detected by the IDS. The authors
aimed to detect two types of attacks: the constrained threat and the
unbounded threat. The first threat alters the beacon message and
forces the legitimate vehicles to clear the road, while the second
threat alters the identities of privileged cars (e.g., firefighter truck).
In the simulation results, REST-Net exhibits high true negative
and true positive rates. However, REST-Net generates a high false
positive rate especially when the true positive increases. In [10],
an anomaly detection technique based on a neural network is
developed to enhance the security in a vehicular network. The
anomaly detection is used by the network IDS to detect the
malicious packets, for instance, the packet that is sent remotely
by the attacker or a modified packet. The proposed network IDS
relies on the unsupervised training algorithm in order to increase
the detection accuracy, i.e., improve the true positive and the true
negative rates. Their security solution is embedded in a Controller
Area Network (CAN) bus and the obtained results are promising
in the sense that their approach achieves a high level of security
when attackers launch their attacks against the CAN. The major
drawback of this solution is the high overhead and a high reaction
delay since the IDS is based on a heavy algorithm for its detection
and reaction process. As in [10], Boudguiga et al. [11] aimed to
enhance the security of the CAN by proposing a lightweight IDS.
They proposed to embed at each microcontroller an IDS agent
to monitor the CAN and hence identify the infected frames. The
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detection rules defined in this research work have the ability to
detect Denial of Service (DoS) attacks. DoS attacks that target
the CAN aim to prevent the electronic control units to access the
CAN bus. According to their security analysis, they proved that
their lightweight IDS could detect accurately this kind of DoS
attacks. However, they did not analyze the performances of their
solution within the simulators dedicated for VANET or in a real
environment.

Recently in [12], [13], the authors developed new security
frameworks to predict the future misbehavior of attackers and
hence prevent their occurrences. To the best of our knowledge,
these works were the first that propose an IPS solution for vehicu-
lar networks. Specifically, Bouali et al. [12] proposed a distributed
intrusion prediction systems for VANET. The main goal of their
system is to predict network attacks such as DoS and false alert
attacks, and hence prevent their occurrence. In the simulation
results, it is apparent that their system exhibits a high prediction
rate and low false positive rates, when these network attacks occur.
Sedjelmaci et al. [13] developed an intrusion prediction framework
based on a game theory to secure the legitimate vehicles against
the malicious devices that aim to launch future lethal attacks and
hence create chaos the within network. In their approach, they
modeled the interaction between the attackers and IPS as a non-
cooperative game, where the IPS is activated in a centralized node,
i.e., service center. The centralized IPS framework is embedded in
NS3 (Network Simulator 3) [18], where the obtained performances
are promising in the sense that the framework is able to predict
with a high accuracy the future misbehavior of attacks as com-
pared to the contemporary intrusion detection frameworks. In both
attack prediction frameworks proposed in [12], [13], distributed
IDS solutions are also developed to detect the current attack that
occurs within a network. In their simulation results, they showed
that both frameworks generate a low overhead in the detection
and prediction process. Furthermore, after further simulations, it
is apparent that, when the number of vehicles is over 350, the
overhead and decision delay increase exponentially because of
the simultaneous activation of the IPS and IDS, and the increase
of audit messages (which contain the features and identities of
infected vehicles) exchanged between vehicles. In Table 1, we
compare the different approaches discussed above in the scaling
mode (i.e., over 350 nodes), based on the following criteria:

• Attack prediction
• Attack detection
• Communication overhead
• Decision delay

Table 1: Comparison between IDS and IPS frameworks for
VANET

Security Attack Attack Communication Decision
frameworks prediction detection overhead delay

[3] No Yes Low Medium
[7] No Yes Medium Medium
[8] No Yes Low High
[5] No Yes Low High
[9] No Yes / /
[10] No Yes High High
[11] No Yes Low Low
[12] Yes Yes High High
[13] Yes Yes High High

In this research work, we circumvent the drawbacks mentioned
above and propose a novel cyber defense framework for a large-

scale vehicular network that aims to launch respectively the
detection, prediction and reaction process only when an attack
occurs or is expected to occur, while taking into account the
decision delay and the communication overhead.

3 SECURITY ARCHITECTURE
CDG is activated at vehicle nodes and equipped with the following
multi-agent systems, IDS, IPS, IRS and IDA, as shown in Figure
1. These security agents are defined as follows:

• H-IDS monitors locally the behavior of a vehicle, where
it is activated and hence deters an internal intruder (e.g.
executes locally a malicious software) from launching an
attack. N-IDS is used to protect the vehicular network
against an external intruder from discovering a security
breach within 802.11 p or/ and 3G/4G networks and
launching lethal attacks, such as Sybil or false data in-
jection attacks. Both systems, N-IDS, and H-IDS, rely on
a specification based detection technique [19], [20], [21]
to detect the intruders. This statistical technique builds a
normal pattern of a target vehicle by using a set of security
rules. Hence, the vehicle is detected as an infected node
when its behavior deviates from this normal pattern. N-
IDS and H-IDS activated within a vehicle can collaborate
with other IDSs that are within the same neighborhood
in order to update the security rules and hence decrease
the false positive and false negative rates. Both IDSs are
equipped with the following modules: (i) Data monitoring
module: H-IDS monitors the process and software that are
executed within a monitored vehicle and N-IDS collects
the network packets coming from 802.11 p and 3G/4G
networks. (ii) Detection module: the IDSs rely on a couple
of security rules related to each attack pattern to detect
the intrusions. (iii) Rule update module: to increase the
detection rate and decrease the false positive rate, each IDS
collaborates with its neighborhood node by exchanging the
security rules and hence updates their backlist databases.
Readers are referred to [5], [7], [10] for more detail on
how to detect the internal and external intruders by H-IDS
and N-IDS.

• A distributed IPS solution is used to predict the future
misbehaviors of intruders before a critical damage oc-
curs. In this solution, each IPS (activated at the vehicle)
collaborate with its neighbors IPSs to predict accurately
the attacks. The most promising prediction techniques
that have been applied in the traditional network include
neural network, support vector machine, Markov chain,
Kalman filter and game theory. A machine learning based
on game theory could be a propitious learning technique
to predict accurately the attacks while taking into account
the resource constraints [22], [23], [24] of a target net-
work. A centralized prediction framework based on game
theory [13], [14] has recently been proposed to protect the
VANET against the most lethal threats that could occur
in the near future. As mentioned in the related work,
such framework is not suitable for a large-scale network
as it incurs a large overhead and high decision delay.
To overcome these issues, a distributed prediction game
is a potential solution for such large-scale network. The
prediction game could be modeled as Li(Q′1, S

′
1) and

L′j(Q
′
2, S
′
2) [25], where Q′1 and Q′2 are respectively the
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gains of IPS (activated at vehicle i) and attackerj , and
S′1 and S′2 are respectively the sets of strategies that IPSi
and attackerj possess. The goal of IPS is to determine
the future stable state defined as a Nash equilibrium, in
which attackerj will launch an attack against vehicle
i. Readers are referred to [12], [13] for more details on
how to predict the misbehavior of vehicles by using game
theory and Kalman filtering.

• IRS triggers a set of actions when the IDS or/and IPS
detects and predicts an attack, respectively. These actions
depend on the severity level of the detected (predicted) at-
tacks. If a group of hackers launches several attacks simul-
taneously, the reaction time against each attack depends
on the nature of the threat. For instance, when a lethal
threat such as broadcasting a false warning is launched by
an adversary, IRS should respond immediately to avoid
traffic collision. The actions that the IRS triggers can
be summarized as follows: (i) IRS broadcasts a blacklist
with a list of infected vehicles to neighboring vehicles,
thus preventing the vehicles (nodes) from communicating
with these infected vehicles (nodes). (ii) IRS changes the
pseudonym of a vehicle (where IRS is activated in the
vehicle) and requests the legitimate vehicles located within
its neighborhood to change their pseudonyms, thus [26]
preventing the attacker from tracking the target vehicle.
(iii) IRS updates the cryptography keys periodically to en-
sure the communication privacy and prevents the attackers
from altering the data exchanged between vehicles.

• IDA plays the role of a head agent and its main function is
to activate the secondary agents: IDS, IPS and IRS, while
taking into account of the delay and overhead constraints.
The head agent aims to maximize its payoff and improves
the reward of each secondary agent by computing the best
response of each one of them. In this work, we assume
that the IDS, IPS, IRS and IDA agents are honest and
not selfish, and all the information that IDA receives from
other agents are correct. In fact, this assumption should
hold since the proposed hierarchical game cannot resolve
the non-cooperative game in which each agent tries to
infect negatively the payoff of other agents, e.g., an IDS
agent provides a false detection (i.e., claims the honest
vehicle as malicious) to IDA.

Once misbehaviors are identified by the head agent IDA,
IDA will request the IDS, IPS and IRS to execute the detection
prediction and reaction process, respectively; then, the IDS, IPS
and IRS will respond by deciding whether to follow the request in
activating the requested processes.

4 HIERARCHICAL SECURITY GAME
The hierarchical cooperative game is composed of two interrelated
cooperative games [27] [28] [29] to determine a tradeoff between
the network and security metrics. In the upper-level, the head
agent IDA determines the optimal strategies (i.e., whether to
launch the detection, prediction and reaction actions) that could
be undertaken by the secondary agents. These optimal strategies
depend on the costs imposed on the secondary agents to achieve
their expected rewards. In the lower-level, the secondary agents
play their best strategies by taking into account of the strategies
envisaged by the head agent. The rewards and costs of the IDS,
IPS, IRS and IDA are defined in Subsection 4.1, and q1, q2 and

Infected Vehicle

IDS

IPS

IRS

Secondary  agents

IDA

Head  agent

𝒑𝟏

𝒑𝟐

Detection 
strategy 

CDG

RSUenodeB

Cyber defense  center

Prediction 
strategy 

Reaction 
strategy 𝒑𝟑

Figure 1: Cyber defense architecture for a vehicular network:
optimal activation of IDS, IPS and IRS agents by the head agent,
IDA.

q3 are the probabilities of the secondary agents in launching their
detection, prediction and reaction strategies, while p1, p2 and p3
are the probabilities of the head agent to request the IDS, IPS and
IRS to launch their optimal strategies. In the proposed game, there
is cooperation between players in order to increase the total payoff
function of the game, i.e., increasing the rewards and minimizing
the costs [30], [31]. This is unlike the non-cooperative game,
where each player aims to increase its own payoff and decreases
the payoff of its opponents.

In this section, first of all, we determine the payoffs of the
secondary and head agents. Afterward, we determine the optimal
strategies of the players in which a tradeoff between the rewards
and costs are maintained. At last, we define the consensus game
between our CDG and the attacker.

4.1 Payoff functions

The payoff functions of the secondary players depend on the
required costs to obtain the optimal rewards. The rewards of the
secondary agents include the detection and prediction accuracies
of cyber-attacks, and the reaction rate against these threats (e.g.,
broadcasting a list of suspected vehicles). The costs are the
communication overheads and decision delays that the secondary
agents generate and are required respectively, to achieve the opti-
mal rewards. The payoff functions of the secondary agents (uIDS ,
uIPS and uIRS) can be modeled as described in Equations (1),
(2) and (3).

uIDS(D
′
IDS , O

′
IDS) = max

O′
IDS ,D

′
IDS

∑
ij

(
u1IDS × u2IDS
D′IDS +O′IDS

), (1)

s.t.
∑T
i=0D

′
IDSi

≤ DIDSmax
,∑T

j=0O
′
IDSj

≤ OIDSmax ,

D′IDSi
×O′IDSj

≥ 0.

where

• u1IDS = x− eD
′
IDSi

• u2IDS = x− eO
′
IDSj

x ∈ [0, 1] is the attack detection rate by the IDS, OIDS is
the communication overhead incurred by the IDS to detect the
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attack, DIDS is the processing delay incurred by IDS to detect
attack. D′ ∈ [0, 1] and O′ ∈ [0, 1] are the normalized values. For
instance, the normalized value of DIDS is computed as follows:

D′IDS =
DIDSi

−DIDSmin

DIDSmax −DIDSmin

,

where DIDSmin
and DIDSmax

are the minimum and maximum
of all obtained delays during attack detection, and D′IDS is the ith
normalized delay. Each time period is indexed by 0 ≤ i, j ≤ T
where T is the total number of periods

The communication overhead and delay are the two main
parameters taken into account in developing a security mechanism
for a vehicular network. When the values of these parameters
increase, they could impact the safety of the vehicles. For example,
an important overhead due to detection framework communica-
tions may impact the reception of V2X safety critical messages.
Meanwhile, an important reaction delay may lead to catastrophic
situations when attacks on critical components of a vehicle are
not detected and prevented quickly. Therefore, the exponential
functions are used to represent the generated overhead and the
required delay for attack detection, in which the value of payoff
uIDS decreases rapidly when the values of these parameters
increase.

uIPS(D
′
IPS , O

′
IPS) = max

O′
IPS ,D

′
IPS

∑
ij

(
u1IPS × u2IPS
D′IPS +O′IPS

), (2)

s.t.
∑T
i=0D

′
IPSi

≤ DIPSmax
,∑T

j=0O
′
IPSj

≤ OIPSmax
,

D′IPSi
×O′IPSj

≥ 0.

where

• u1IPS = y − eD
′
IPSi

• u2IPS = y − eO
′
IPSj

y ∈ [0, 1] is the attack prediction rate by the IPS, OIPS is the
communication overhead incurred by the IPS to predict the attacks
and DIPS is the processing delay incurred for the prediction
process. Here, as described in Section 3, the process of the attack
prediction is done in a distributed manner, where the IPS relies on
its local information and those of its neighbors to predict the future
misbehavior of an attacker. D′IPS ∈ [0, 1] and O′IPS ∈ [0, 1] are
respectively the normalized values of the overhead and delay.

uIRS(D
′
IRS , O

′
IRS) = max

O′
IRS ,D

′
IRS

∑
ij

(
u1IRS × u2IRS
D′IRS +O′IRS

), (3)

s.t.
∑T
i=0D

′
IRSi

≤ DIRSmax ,∑T
j=0O

′
IRSj

≤ OIRSmax
,

D′IRSi
×O′IRSj

≥ 0.

where:

• u1IRS = ez −D′IRSi

• u2IRS = ez −O′IRSj

z ∈ [0, 1] is the reaction rate. As explained in Section 3, the
reaction could be, for instance, preventing the legitimate vehicles
from communicating with the infected vehicles or launching a
new key updating process. OIRS and DIRS are respectively the

communication overhead and the processing delay incurred by the
IRS agent to react to attackers. D′IRS ∈ [0, 1] and O′IRS ∈ [0, 1]
are the normalized values.

Note that the reaction action is mandatory in vehicular net-
works since the cyber-attacks that target the vehicles could be
lethal, for example, hacking the braking system to disable the
vehicle brakes. Therefore, the exponential function is used for
computing z.

The IDA’s cost depends on the overhead and delay incurred
by the head agent to launch optimally the strategies of IDS,
IPS and IRS agents. The false decision rate increases when the
IDA requests the secondary agents to trigger their strategies to
secure the vehicle or its neighborhood when there is no attack.
The communication overhead and processing delay are the costs
incurred by the IDA to implement the detection, prediction and/or
reaction strategies. The payoff function of IDA is computed as

uIDA =
(O′Total − ef ).(D′Total − ef )∑T
j=0O

′
IDAj

+
∑T
i=0D

′
IDAi

, (4)

where:

• O′Total =
∑T
j=0O

′
IDSj

+
∑T
j=0O

′
IPSj

+
∑T
j=0O

′
IRSj

• D′Total =
∑T
i=0D

′
IDSi

+
∑T
i=0D

′
IPSi

+
∑T
i=0D

′
IRSi

f ∈ [0, 1] is the false decision rate. As the false decision
provided by IDA could impact the security performance of CDG,
we represent f by an exponential function. The costs caused by
the head IDA are normalized, D′IDA ∈ [0, 1] and O′IDA ∈ [0, 1].

Figure 2 and Table 2 illustrate the extensive representation
of our hierarchical security game and the correspondent strategic
representation of head-secondary payoff matrix. In the proposed
game, the IDA acts first by setting the requested probabilities
p1, p2, and p3. The secondary players then act by setting the
probabilities q1, q2 and q3 of executing their detection, prediction
and reaction process, respectively, after having observed p1, p2,
and p3.

Table 2: Payoff matrix of a hierarchical security game

Secondary agents
Detection (q1) Prediction (q2) Reaction (q3)

H
ea

d
ag

en
t Detection (p1) (u∗IDA, u∗IDS ) (uIDA, uIPS ) (uIDA, uIRS )

Prediction (p2) (uIDA, uIDS ) (u∗IDA, u∗IPS ) (uIDA, uIRS)
Reaction (p3) (uIDA, uIDS ) (uIDA, uIPS ) (u∗IDA, u∗IRS )

𝑝1 𝑝2 𝑝3 

𝑞1 1-𝑞1 𝑞2 1-𝑞2 1-𝑞3 𝑞3 

(𝑢𝐼𝐷𝐴
∗ , 𝑢𝐼𝐷𝑆

∗ ) (𝑢𝐼𝐷𝐴
∗ , 𝑢𝐼𝑃𝑆

∗ ) (𝑢𝐼𝐷𝐴
∗ , 𝑢𝐼𝑅𝑆

∗ ) (𝑢𝐼𝐷𝐴, 𝑢𝐼𝐷𝑆) (𝑢𝐼𝐷𝐴, 𝑢𝐼𝑃𝑆) (𝑢𝐼𝐷𝐴, 𝑢𝐼𝑅𝑆) 

 

 

 

 

 

 

IDA 

IRS IPS 
IDS 

Figure 2: Extensive-form representation of a hierarchical security
game
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4.2 Hierarchical security game solution
In the proposed hierarchical cooperative game, the head player
IDA computes the optimal delays and overheads incurred by the
secondary players IDS, IPS and IRS to achieve high detection,
prediction and reaction rates. According to these optimal costs, the
secondary players decide whether to activate (or not) the strategies
requested by the head player. Therefore, the equilibrium is attained
when the secondary players launch the strategies that the head
player requests.
Lemma 1. Equations (5), (6), (7) and (8) are respectively the best

response (ϕ) of the IDS, IPS, IRS and IDA agents, where xϕ

is the number of attacks that are detected with a high accuracy,
yϕ is the number of attacks that are predicted with a high
accuracy, zϕ is the number of reactions against attackers, f

′ϕis
the number of correct decisions made by IDA toward the IDS,
IPS and IRS, and f

′
= 1− f .

xϕ =
e
∑T

i=0D
′
IDSi + e

∑T
j=0 O

′
IDSj

2
. (5)

yϕ =
e
∑T

i=0D
′
IPSi + e

∑T
j=0 O

′
IPSj

2
. (6)

zϕ = ln

(∑T
i=0 D

′
IRSi

+
∑T

j=0 O
′
IRSj

2

)
. (7)

f
′ϕ = ln

(
2e

O′Total +D′Total

)
. (8)

Proof 1. The best responses (ϕs) of the secondary agents, IDS,
IPS and IRS, and the head IDA are determined by computing
respectively the first derivative of uIDS , uIPS , uIRS and
uIDA. The first derivative of uIDS with respect to x is

∂uIDS
∂x

=
2x− (e

∑T
i=0D

′
IDSi + e

∑T
j=0 O

′
IDSj )

(
∑T
i=0D

′
IDSi

+
∑T
j=0O

′
IDSj

)
.

By fixing ∂uIDS

∂x = 0, we get x = e
∑T

i=0 D′
IDSi+e

∑T
j=0 O′

IDSj

2 .
The first derivative of uIPS with respect to y is

∂uIPS
∂y

=
2y − (e

∑T
i=0D

′
IPSi + e

∑T
j=0 O

′
IPSj )

(
∑T
i=0D

′
IPSi

+
∑T
j=0O

′
IPSj

)
.

By fixing ∂uIPS

∂y = 0, we get y = e
∑T

i=0 D′
IPSi+e

∑T
j=0 O′

IPSj

2 .
The first derivative of uIRS with respect to z is

∂uIRS
∂z

=
2e2z − (

∑T
i=0D

′
IRSi

+
∑T
j=0O

′
IRSj

).ez∑T
i=0D

′
IRSi

+
∑T
j=0O

′
IRSj

.

By fixing ∂uIRS

∂z = 0, we get z =

ln
(∑T

i=0D
′
IRSi

+
∑T

j=0 O
′
IRSj

2

)
.

The first derivative of uIDA with respect to f ′ is

∂uIDA

∂f ′
=

e1−2f ′
.(ef

′
.(O′Total +D′Total)− 2e)∑T

j=0 O
′
IDAj

+
∑T

i=0 D
′
IDAi

.

By fixing ∂uIDA

∂f ′ = 0, we get: ef
′
.(O′Total+D

′
Total)−2e =

0 as e1−2f
′

is strictly positive. Thus,

f ′ = ln
(

2e
O′

Total+D
′
Total

)
The second derivatives of uIDS , uIPS , uIRS and uIDA are

∂2uIDS
∂2x

=
2

(
∑T
i=0D

′
IDSi

+
∑T
j=0O

′
IDSj

)
. (9)

∂2uIPS
∂2y

=
2

(
∑T
i=0D

′
IPSi

+
∑T
j=0O

′
IPSj

)
. (10)

∂2uIRS
∂2z

=
ez.(4ez −

∑T
i=0D

′
IRSi

−
∑T
j=0O

′
IRSj

)∑T
i=0D

′
IRSi

+
∑T
j=0O

′
IRSj

.

(11)

∂2uIDA
∂2f ′

=
e1−2f

′
.(4e− ef ′

.(O′Total +D′Total))∑T
j=0O

′
IDAj

+
∑T
i=0D

′
IDAi

. (12)

From Equations (9) and (10), we notice that ∂2uIDS

∂2x and
∂2uIPS

∂2y are positives. Therefore, the payoffs uIDS and uIPS
are strongly convex [32], with strong convexity equal to

2
(
∑T

j=0 O
′
IDSj

+
∑T

i=0D
′
IDSi

)
and 2

(
∑T

j=0 O
′
IPSj

+
∑T

i=0D
′
IPSi

)
,

respectively. Since uIDS and uIPS are convex functions,
Equations (5) and (6) are proved. From Equation (11),
we notice that uIRS is a convex function only when
(4ez −

∑T
i=0D

′
IRSi

−
∑T
j=0O

′
IRSj

) ≥ 0 since ez and
(
∑T
j=0O

′
IRSj

+
∑T
i=0D

′
IRSi

) are positives. Therefore, Equa-
tion (7) is the best response of the IRS only when Equation
(13) holds.

z ≥ ln
(∑T

i=0D
′
IRSi

+
∑T
j=0O

′
IRSj

4

)
. (13)

From Equation (12), uIDA is a convex function only when
4e− ef ′

.(O′Total +D′Total) ≥ 0
Hence, Equation (8) is the best response of the head agent IDA
only when the Equation (14) holds.

f ′ ≤ ln
( 4e

O′Total +D′Total

)
. (14)

�

Theorem 1:
The cooperative secondary players are incentivized not to

unilaterally deviate from the equilibrium state. The equilibrium
point oE is equal to (xE , yE , zE).
Proof 2.

According to Shapley Theorem [33], xϕ, yϕ and zϕ represent
the optimal equilibrium in a hierarchical cooperative game
since the payoffs functions uIDS , uIpS and uIRS are convex.
Equations (5), (6) and (7) can be modeled by a set of linear
equations as follow


xϕ + 0.yϕ + 0.zϕ = e

∑T
i=0 D′

IDSi+e

∑T
j=0 O′

IDSj

2 ,

0.xϕ + yϕ + 0.zϕ = e
∑T

i=0 D′
IPSi+e

∑T
j=0 O′

IPSj

2 ,

0.xϕ + 0.yϕ + zϕ = ln
(∑T

i=0D
′
IRSi

+
∑T

j=0 O
′
IRSj

2

)
.

(15)
The determinant of these linear equations is computed as
follows: According to [34], the equilibrium could be solved
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by using the Cramer rule. The point (xE , yE , zE) is computed
as follows:

xE =
det(Mx)

det(M)
, yE =

det(My)

det(M)
, zE =

det(Mz)

det(M)
.

det(M) is the determinant of the linear equations, which
is equal to 1, where det(Mx), det(My) and det(Mz) are
the determinants of matrices Mx, My and Mz , which are
computed as follows:

det(Mx) =

∣∣∣∣∣∣∣
α 0 0

β 1 0

γ 0 1

∣∣∣∣∣∣∣
det(My) =

∣∣∣∣∣∣∣
1 α 0

0 β 0

0 γ 1

∣∣∣∣∣∣∣
det(Mz) =

∣∣∣∣∣∣∣
1 0 α

0 1 β

0 0 γ

∣∣∣∣∣∣∣
Therefore, (xE , yE , zE) corresponds to the optimal equilib-
rium point since xE = α, yE = β and zE = γ, where
α = xϕ, β = yϕ, and γ = zϕ.
The equilibrium point o∗E(x

∗
E , y

∗
E , z

∗
E) = (α∗, β∗, γ∗). α, β

and γ are normalized as follows:
α∗ =

αj−αmin

αmax−αmin
, β∗ =

βj−βmin
βmax−βmin , γ∗ =

γj−γmin
γmax−γmin

where (αmin, βmin, γmin) and (αmax, βmax, γmax)
are respectively the minimum and maximum values obtained
during the detection, prediction and reaction process. (αj ,
βj , γj) are the jth normalized values. Here, α∗, β∗ and
γ∗ ∈ [0, 1].
�

The secondary agents trigger their detection, prediction and
reaction strategies, only when the equilibrium is reached, i.e.,
q1 ≥ α∗, q2 ≥ β∗, and q3 ≥ γ∗. The proposed game is
repeated until the equilibrium is reached, i.e., the secondary
players launch the strategies that the head player requests.
This type of game is defined as a finitely repeated game [35]
[36]. It is apparent that the security performance of CDG
depends mainly on the costs (i.e., delays and overheads) that
the secondary agents are required to achieve a high level of
security. Note that in this security game, we assume that the
head player IDA has the knowledge of the probabilities q1,
q2, and q3 since IDA is located within the same vehicle,
where the pseudocode of the detection, prediction and reaction
processes by CDG is running. The pseudocode is illustrated by
Algorithm 1.
Our game is represented in the extensive form (as shown in
Figure 2), in which the game’s payoff function is stored as a
multidimensional table (as shown in Table 2) with one entry
for each player’s payoff under each pure strategy. Therefore,
the size of the linear feasibility program of our equilibrium
solution oE is polynomial in the size of the extensive form
representation of the game. Note that there exist polynomial-
time algorithms for solving linear feasibility programs, e.g.,
the ellipsoid method.

Algorithm 1 Cyber security process of CDG

1: Begin:
2: Repeat:
3: The normalized Delays (D′IDSi

, D′IPSi
, D′IRSi

) and over-
heads (O′IDSj

, O′IPSj
, O′IRSj

)are computed by the sec-
ondary players

4: if q1 ≥ α∗ then
5: IDA requests its IDS agent to launch the detection process
6: else
7: IDA does not send any request to IDS,
8: if (DIDSi ≥ DIDSmax)‖(OIDSj ≥ OIDSmax) then
9: IDA stops the detection process of IDS until (DIDSi <

DIDSmax) & &(OIDSj < OIDSmax),
10: end if
11: end if
12: if q2 ≥ β∗ then
13: IDA requests its IPS agent to launch the prediction process,
14: else
15: IDA does not send any request to IPS
16: if (DIPSi ≥ DIPSmax)‖(OIPSj ≥ OIPSmax) then
17: IDA stops the detection process of IPS until (DIPSi <

DIPSmax) & &(OIPSj < OIPSmax),
18: end if
19: end if
20: if q3 ≥ γ∗ then
21: IDA requests its IRS agent to launch the reaction process
22: else
23: IDA does not send any request to IRS
24: if (DIRSi ≥ DIRSmax)‖(OIRSj ≥ OIRSmax) then
25: IDA stops the reaction process of IRS until (DIRSi <

DIRSmax) & &(OIRSj < OIRSmax),
26: end if
27: end if

Until: the end of hierarchical security game

4.3 Consensus game between CDG and attacker

Let φ1 be the probability that an attacker launches an attack
against vehicle i, and φ2 be the probability of CDG to ac-
tivate its IDS or IPS to protect vehicle i. Let S(φ1, φ2) be
the probability of successful prevention of an attack by CDG.
S can be expressed as shown in Equation (16). In this game,
the players, attacker, and CDG, possess a set of pure strategies
ωAttacker = {ω1

i |i = 1, ..., s} and ωCDG = {ω2
j |j = 1, ..., s′},

where s and s′ are respectively the number of pure strategies that
the attacker and the CDG can use.

S(φ1, φ2) =
φ2

φ2 + φ1
. (16)

It is apparent from Equation (16) S is increasing in φ2 from
0 to 1 as φ2 equal to 0 and it tend to a maximum value (φmax),
respectively. S is decreasing in φ1 from 1 to 0 when φ1 is equal
to 0 and it tends to a maximum value (φ

′

max), respectively. Let
GCDG and GAttacker be the expected utility of CDG to protect
vehicle i and the expected utility of attacker, respectively:

GAttacker = R′.(1− S(φ1, φ2))− C ′.φ1.

GCDG = R.S(φ1, φ2)− C.φ2.
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where R is the CDG’s reward to detect/predict successfully an
attack and R′ is the attacker’s reward for a successful attack. C
andC ′ are respectively the costs incurred by CDG and the attacker
to protect and attack vehicle i.

Theorem 2: The game between the players CDG
and attacker converges to a unique NE point (φ∗1, φ

∗
2),

φ∗1 = C
′′
.R

′′
. R

′

C′.(1+C′′ .R′′ )2
and φ∗2 = R

′

C′.(1+C′′ .R′′ )2
where

C
′′
= C

C′ and R
′′
= R′

R

Proof 3. We have

dGCDG
dφ2

=
R.φ1

(φ2 + φ1)2
− C. (17)

dGAttacker
dφ1

=
R′.φ2

(φ2 + φ1)2
− C ′. (18)

To find the equilibrium, we set Equations (17) and (18) equals
to 0, and hence we get

C =
Rφ1

(φ2 + φ1)2
. (19)

C ′ =
R′.φ2

(φ2 + φ1)2
. (20)

Dividing Equation (19) by (20), we get

φ1 = C
′′
.R

′′
.φ2.

Substituting φ1 into (20) yields

φ2 =
R′

C ′.(1 + C ′′ .R′′)2
. (21)

φ1 = C
′′
.R

′′ R′

C ′.(1 + C ′′ .R′′)2
. (22)

In the following, we aim to prove that Equation (21) converges
to NE of the CDG, φ∗2, and Equation (22) converges to NE
of the attacker, φ∗1.
According to [37] [38], the couple (φ1, φ2) converges to the
NE point, (φ∗1, φ

∗
2), if and only if there exists a couple of

pure strategies (ω1
1 , ω

1
s) and (ω2

1 , ω
2
s′), such that the couple

(φ1(ω
1
1), φ2(ω

2
1)) = (0, 0) and

GAttackeri(ω
1
s , φ
∗
2j ) > GAttackeri(ω

1
1 , φ
∗
2j ).

GCDGj (ω
2
s′ , φ

∗
1i) > GCDGj

(ω2
1 , φ
∗
1i).

where GAttackeri(ω
1
s , φ
∗
2j ) is the utility of the attacker when it

carries out strategy ω1
s with respect to the CDG’s strategy, ω2

j .
GCDGj

(ω2
s′ , φ

∗
1i) is the utility of CDG when it carries out strategy

ω2
s′ with respect to the attacker’s strategy, ω1

i .
δ and δ′ are two positive values such that,

GAttackeri(ω
1
s , φ2j ) − GAttackeri(ω

1
1 , φ2j ) ≥ δ > 0,

GCDGj
(ω2
s′ , φ1i) − GCDGj

(ω2
1 , φ1i) ≥ δ′ > 0

GAttackeri(ω
1
s , φ2j ) and GCDGj

(ω2
s′ , φ1i) can be written

as:

GAttackeri(ω
1
i , φ2j ) = R′.(1−

s∑
i=1

S(φ1i , φ2j ))−C
′
.
s∑
i=1

φ1i .

(23)

GCDGj
(ω2
j , φ1i) = R.

s′∑
j=1

S(φ1i , φ2j )− C.
s′∑
j=1

φ2j . (24)

From Equations (23) and (24), we get

GAttackeri(φ21) + δ = R′.(1−
s∑
i=1

S(φ1i, φ21))− C ′.
s∑
i=1

φ1i

≤ R′.(1−
s∑
i=1

S(φ1i , φ2s′ ))− C
′
.
s∑
i=1

φ1i

= GAttackeri(φ2s′ ).
(25)

GCDGj
(φ11) + δ′ = R.

s′∑
j=1

S(φ11 , φ2j )− C.
s′∑
j=1

φ2j

≤ R.
s′∑
j=1

S(φ1s , φ2j )− C.
s′∑
j=1

φ2j

= GCDGj (φ1s).

(26)

According to Equations (25) and (26), we claim that the
attacker and CDG choose respectively the strategies ω1

s and
ω2
s′ , after sth and s′th iterations. Hence, we get the couple

(φ1(ω
1
1), φ2(ω

2
1)) = (0, 0). Thus, CDG and the attacker reach

consensus at the NE point.

(φ∗1, φ
∗
2) = (C

′′
.R

′′
.

R′

C ′.(1 + C ′′ .R′′)2
,

R′

C ′.(1 + C ′′ .R′′)2
) =

(argφ1
maxGAttacker

(φ1, φ
∗
2), argφ2

maxGCDG(φ
∗
1, φ2)).

�

5 PERFORMANCE EVALUATION

The proposed cyber defense architecture CDG, based on a hierar-
chical cooperative security game is evaluated by using a network
simulator (NS3) [18]. In this section, we first study the coverage of
the equilibrium point oE (xE , yE , zE). Here, we aim to determine
the optimal values of delays, and overheads (D′IDSi

, O′IDSj
),

(D′IPSi
, O′IPSj

), and (D′IRSi
, O′IRSj

) to reach this equilibrium
point. Afterward, we evaluate the performance of CDG with
current cyber detection and prediction framework, developed for
vehicular networks [5], [12], [13]. Specifically, we compute the
following metrics: false positive rate, false negative rate, delay and
communication overhead. These metrics are defined as follows:

• False positive, CDG classifies the vehicles that are not
attacked by the attackers as infected vehicles.

• False negative, CDG classifies the infected vehicles as
honest nodes.

• Delay is the required time for CDG to predict and detect
accurately the infected vehicles.

• Overhead is the number of bytes that the IDS and IPS
agents exchanges between their neighbors to detect, pre-
dict and react efficiently against cyber-attacks.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TETC.2018.2890476

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

5.1 Simulation setup

In our simulation, we vary the number of vehicles from 300 to
700 nodes. The mobility model of vehicles follows a probabilistic
pattern, which is generated by the Simulation of Urban Mobility
(SUMO) simulator [39]. In this probabilistic model, the vehicle
follows a well-defined path and chooses a speed from the set [min
speed, max speed]. The number of attackers varies from 10% to
30% of the overall vehicles. In our simulation, we inject the most
lethal attacks that could target the vehicular network, such as black
hole, false data injection and false dissemination attacks. Black
hole attack drops all the messages that the infected vehicle receive,
false data injection attack alters the gathered data from a sensor of
a vehicle and injects wrong information, and false dissemination
attack broadcasts a false alert to lure the legitimate vehicle that
an accident has occurred in order to cause a traffic jam. The use
case that we attempt to secure is a safety-oriented application,
which may help a driver mitigate dangerous situations (e.g., car
crash) by monitoring the road and listening to the safety messages
exchanged between vehicles. The network is partitioned into a
number of clusters, each with a cluster head (CH) that manages
the information sent from its cluster members. In case of a crash,
vehicles close to the area of the crash can broadcast alert messages
to their CH, which in turn forwards the aggregated message to its
neighboring CHs. This aggregated alert message crosses from one
CH to another until it reaches the destination (e.g., road side unit).
As explained in Subsection 3, the IDS relies on a specification
based detection technique to detect these attacks. Furthermore,
to detect the future misbehavior of an attacker the IPS relies on
a predictive game theory concept. Readers are referred to these
recent works [5], [12], [13] regarding the detection and prediction
of current and future attacks. The main simulation parameters are
summarized in Table 3.

Table 3: Summary of Simulation Parameters

Simulation area 20000*20000 m2

Simulation time 400 seconds
Number of vehicles From 300 to 700
Number of attackers From 10 % to 30 % of overall vehicles
Range 400 m
Routing protocol Cluster-based protocol [40]
A mobility model generator Simulation of urban mobility, SUMO [39]
Speed From 50 to 90 km/h
Detection technique Specification based detection [19]
Prediction technique Predictive Game [14]

The most important results are summarized below.

5.2 Simulation results

5.2.1 Optimal detection, prediction and reaction systems,
and Optimal equilibrium point O∗E
As shown in Table 4, the probabilities to detect and predict the
attackers with high accuracy and react promptly before critical
damages occur depend mainly on the overheads, delays and (n,
k, s). Here, n is the number of detected attacks by IDS, k is
the number of predicted attacks by IPS and s is the number of
reactions that IRS launches against the cyber-attacks. In this game,
it is apparent that the secondary agents, IDS, IPS and IRS, aim to
increase their rewards by detecting, predicting and reacting against
a maximum number of attackers, while taking into account of
the communication overheads and delays. Hence, there exists a
dilemma between a reliable detection, prediction and reaction; low

overheads and delays should both be ensured by the IDS, IPS
and IRS. The head agent, IDA activates the IDS, IPS and IRS
only when x, y and z reach x∗E , y∗E , z∗E , respectively. In the
hierarchical cooperative game, we fix n, s, and k and determine
the optimal values of (D′IDSi

, O′IDSj
), (D′IPSi

, O′IPSj
), and

(D′IRSi
, O′IRSj

) that allow us to reach the equilibrium point, x∗E ,
y∗E , z∗E .

From Table 4, we can see that the communication overheads
rates (O

′
/
∑
O′) incurred by the secondary agents IPS and IDS

to detect and predict the attacks are greater than their processing
delays rates (D

′
/
∑
D′). This is due to the fact that, the IDS and

IPS agents collaborate with other secondary agents by exchanging
a list of attack signatures. Furthermore, the processing delay rate
that the secondary agent IRS requires to react against the attacker
is greater than the overhead rate since the IRSs do not collaborate
and the decision making is done locally.

Table 4: Equilibrium point O∗E

(a)x∗E
O′IDSn

/
∑n

j=1 O
′
IDSj

D′IDSn
/
∑n

i=1 D
′
IDSi

n x∗E
0.034 0.018 20 0.42
0.041 0.023 30 0.49
0.047 0.025 40 0.52

(b)y∗E
O′IPSk

/
∑k

j=1 O
′
IPSj

D′IPSk
/
∑k

i=1 D
′
IPSi

k y∗E
0.037 0.022 20 0.28
0.047 0.023 30 0.34
0.057 0.026 40 0.4

(c)z∗E
O′IRSs

/
∑s

j=1 O
′
IRSj

D′IRSs
/
∑s

i=1 D
′
IRSi

s z∗E
0.02 0.039 20 0.45
0.022 0.048 30 0.49
0.025 0.055 40 0.56

5.2.2 False positive and negative rates
As shown in Figure 3, the number of false positives that is
generated by the cyber defense game, CDG increases slowly com-
pared to the current intrusion detection and prediction frameworks
developed for vehicular networks [5], [12], [13]. Specifically, the
host IDS proposed in [5], which is based on a statistical detection
technique, which generates a high false positive rate when the
number of attackers is over 400 nodes. From Figure 4, the number
of false negatives of CDG, host IDS framework [5] and intrusion
prediction frameworks [12], [13] increases, specifically, when the
number of vehicles and attackers are above 400 nodes and equal
to 30% of overall vehicles, respectively. This increase is much
greater for the IDS framework [5] as compared to other security
frameworks. These results are attributed to the fact that in [5],
there is no attack prediction, the host IDS detects only the current
cyber threats against the vehicle.

In the scaling mode, when the number of attackers is equal to
30% the overall nodes and number of vehicles is above 400 nodes,
the false positive and negative rates of CDG increase slowly, which
are lower than 4% and 5%, respectively, as shown in Figures 3(a)
and 4(b). These results are attributed to the following:

(i) Distributed security game: CDG is based on three secondary
and one head agents that are activated within a vehicle and
collaborate with other security agents (launched within other
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(a)

(b)

Figure 3: False positive rate: number of attackers equal to (a) 10
% of overall vehicles and (b) 30 % of overall vehicles.

vehicles) to predict, detect and react efficiently against the
malicious behaviors. Based on a hierarchical cooperative
game, we can determine the optimal equilibrium O∗E (x∗E ,
y∗E , z∗E) that allows the CDG to identify accurately the
infected vehicles and the cyber threats that launch attacks;
hence, the false positive and negative rates are low and
almost constants even in the scaling mode.

(ii) Consensus game: in this security game, there is a consensus
between the attacker that targets the legitimate vehicle and
CDG as demonstrated in Theorem 2. The CDG player
knows the frequency of attacks launched by the cyber threat
and hence it can detect and predict the current and future
misbehaviors with high accuracy.

5.2.3 Overhead
Figures 5(a) and 5(b) illustrate the overheads generated by the
intrusion detection and prediction frameworks [5], [12], [13] and
a security game CDG, when the number of attackers is equal to
10% and 30% of overall vehicles, respectively. Figures 5(a) and
5(b) show that the communication overhead generated by each
cyber security framework increases when the number of attackers
and vehicles increases. This increase is much slower for CDG
since the overheads in the detection and prediction frameworks [5],
[12], [13] increase exponentially, in particular, when the number
of vehicles and attacker is above 400 nodes and equals to 30% of
the overall vehicles, respectively. Such results are attributed to the
following reasons:

(i) Hierarchical cooperative game: in the proposed game, the
head agent IDA determines what are the optimal overheads
of the secondary agents IDS, IPS and IRS, while taking into
account of the security performances of CDG (i.e., low false
positive and negative rates). In fact, when the overheads are
low, almost all attacks are not detected (predicted). On the
other hand, when these overheads are high, the performance
of V2X communications are degraded [15]. Therefore, the
head and secondary agents aim to ensure a tradeoff between

(a)

(b)

Figure 4: False negative rate: number of attackers equals to (a)
10% of overall vehicles and (b) 30% of overall vehicles.

the low false positive and negative rates, and low overhead.
These results are achieved even when the number of vehicles
is equal to 700 nodes.

(ii) Equilibrium overhead: the goal of the attacker is to increase
its payoff by decreasing the payoff of its opponent, CDG.
The attackers aim to force the secondary agents to generate
high communication overheads, while the goal of CDG is to
detect and predict almost all attacks that target the legitimate
vehicles while minimizing the communication overheads. As
a result, we claim that, when the number of attackers and ve-
hicles is high, the overhead generated by CDG remains low.
Since almost all attackers that aim to exhaust the resources
of vehicles (i.e., increase the overhead) are detected via the
proposed security cooperative game.

5.2.4 Delay
As shown in Figures 6(a) and 6(b), the required delay to detect
and predict the attacks by CDG increases slowly, and it is smaller
than 80 milliseconds (ms) when the number of both vehicles and
attackers increases. This is unlike the other security frameworks,
where the delays of the intrusion detection and prediction frame-
works [5], [12], [13] are above 500 ms, 700 ms, and 400 ms,
respectively, when the number of vehicles is equal to 700 nodes.
These results are achieved due to the following reasons:

(i) Hierarchical cooperative game: in this security game, the
required delays for CDG to predict and detect accurately
the infected vehicles are considered as the main metric for
influencing the final decision making provided by the head
agent IDA to its secondary agents IDS, IPS and IRS, i.e.,
whether to activate the detection, prediction, and reaction
strategies. The goal of CDG is to detect and predict almost all
attacks that (will be) occur, while reacting promptly before a
critical damage to the network is instigated.

(ii) Equilibrium delay: as for the overhead, the CDG player aims
to detect and predict promptly almost all attacks that (will)
occur, while the attacker player forces the secondary agents
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(a)

(b)

Figure 5: Overhead: number of attackers equals to (a) 10% of
overall vehicles and (b) 30% of overall vehicles.

(a)

(b)

Figure 6: Delay: number of attackers equals to (a) 10% of overall
vehicles and (b) 30% of overall vehicles.

IDS and IPS to generate high delays in order to launch an
attack without being detected. Therefore, the goal of a head
agent is to ensure a dilemma between low false positive and
negative rates, while minimizing the required delays of the
secondary agents.

6 CONCLUSION
Game theory plays an important part in the philosophy of defense,
while the behavioral game is considered as a powerful tool to
model the interactions between a cooperative and non-cooperative
players. In this research work, we have proposed an efficient cyber

security framework, where a tradeoff between the network and
security metrics is achieved by using a hierarchical cooperative
game. Furthermore, we have gained a new insight from a security
cooperative game, where the head agent collaborates with the
secondary agents to predict and detect with a high accuracy the
lethal attacks, while taking into consideration of the overhead
and delay. To the best of our knowledge, this is the first cyber
defense framework that incorporates the overhead and delay as
the main parameters for influencing the activation of IDS, IPS
and IRS agents. Our simulation results show that CDG requires a
rather small communication overhead and a short time to detect
and predict the attacks with a low false positive and low false
negative rate as compared to the contemporary intrusion detection
and prediction frameworks [5], [12], [13]. CDG has also been
shown to scale well for large vehicular networks, a more realistic
scenario. Our future goal is to integrate other network metrics such
as throughput and packet delivery ratio in the decision making
process, and evaluate CDG in terms of detection and false positive
rates.

7 ACKNOWLEDGEMENT

This work has been carried out in SystemX and it is part of the
project Cybersecurity of Intelligent Transportation Systems (CTI)
[41]. Is an enhanced and extended version of the paper that will
be presented at IEEE CCNC, Las Vegas-USA, 2018 [42].

REFERENCES
[1] L. Peng, T. Miyazaki, K. Wang, S. Guo, and W. Zhuang, “Vehicle-assist

resilient information and network system for disaster management,” IEEE
Transactions on Emerging Topics in Computing, vol. 5, no. 3, pp. 438 –
448, 2017.

[2] D. He, S. Chan, and M. Guizani, “Drone-assisted public safety networks:
The security aspect,” IEEE Communications Magazine, 2017.

[3] H. Sedjelmaci, S. M. Senouci, and N. Ansari, “Intrusion detection
and ejection framework against lethal attacks in uav-aided networks:
A bayesian game-theoretic methodology,” IEEE Trans. on Intelligent
Transportation Systems, vol. 18, no. 5, pp. 1143–1153, 2017.

[4] P. Sakarindr and N. Ansari, “Security services in group communica-
tions over wireless infrastructure, mobile ad-hoc, and wireless sensor
networks,” IEEE Wireless Communications Magazine, vol. 14, no. 5, pp.
8–20, 2007.

[5] K. Zaidi, M. B. Milojevic, V. Rakocevic, A. Nallanathan, and M. Ra-
jarajan, “Host-based intrusion detection for vanets: A statistical approach
to rogue node detection,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 8, pp. 6703–6714, 2016.

[6] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” DEF CON, 2015.

[7] T. Bouali, E.-H. Aglzim, and S.-M. Senouci, “A secure intersection-based
routing protocol for data collection in urban vehicular networks,” in IEEE
Global Communications Conference (GLOBECOM), Austin, TX, USA,
2014, pp. 82–87.

[8] B. Yu, C.-Z. Xu, and B. Xiao, “Detecting sybil attacks in vanets,” Journal
of Parallel and Distributed Computing, vol. 73, no. 6, pp. 746–756, 2013.

[9] A. Tomandl, K.-P. Fuchs, and H. Federrath, “Rest-net: A dynamic rule-
based ids for vanets,” in IEEE 7th IFIP Wireless and Mobile Networking
Conference (WMNC), Vilamoura, Portugal, 2014, pp. 1–8.

[10] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PloS one, vol. 11, no. 6,
2016.

[11] A. Boudguiga, W. Klaudel, A. Boulanger, and P. Chiron, “A simple intru-
sion detection method for controller area network,” in IEEE International
Conference on Communications (ICC), Kuala, Lumpur malaysia, 2016,
pp. 1–7.

[12] T. Bouali, S.-M. Senouci, and H. Sedjelmaci, “A distributed detection
and prevention scheme from malicious nodes in vehicular networks,”
International Journal of Communication Systems, vol. 29, no. 10, p.
1683–1704, 2016.

[13] H. Sedjelmaci, S. M. Senouci, and T. Bouali, “Predict and prevent from
misbehaving intruders in heterogeneous vehicular networks,” Vehicular
Communications, vol. 10, pp. 74–83, 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TETC.2018.2890476

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

[14] H. Sedjelmaci, T. Bouali, and S. M. Senouci, “Detection and prevention
from misbehaving intruders in vehicular networks,” in IEEE Global
Communications Conference (GLOBECOM), Austin, TX, USA, 2014, pp.
39–44.

[15] J. Petit and Z. Mammeri, “Authentication and consensus overhead in
vehicular ad hoc networks,” Telecommunication systems, pp. 1–14, 2013.

[16] N. Tsikoudis, A. Papadogiannakis, and E. Markatos, “Leonids: A low-
latency and energy-efficient network-level intrusion detection system,”
IEEE Transactions on Emerging Topics in Computing, vol. 4, no. 1, pp.
142 – 155, 2014.

[17] H. Sedjelmaci, S. M. Senouci, and N. Ansari, “A hierarchical detection
and response system to enhance security against lethal cyber-attacks in
uav networks,” IEEE Trans. on Systems, Man, and Cybernetics: System,
2017.

[18] “Network simulator (ns-3). available on http://www.nsnam.org.”
[19] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and

S. Zhou, “Specification-based anomaly detection: a new approach for
detecting network intrusions,” in Proceedings of the 9th ACM conference
on Computer and communications security, Washington, DC, USA, 2002,
pp. 265–274.

[20] R. Mitchell and R. Chen, “Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp.
16–30, 2015.

[21] R. Berthier and W. H. Sanders, “Specification-based intrusion detection
for advanced metering infrastructures,” in IEEE 17th Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC), Pasadena, CA,
USA, 2011, pp. 184–193.

[22] J. Ma, Y. Liu, L. Song, and Z. Han, “Multiact dynamic game strategy for
jamming attack in electricity market,” IEEE Transactions on Smart Grid,
vol. 6, no. 5, pp. 2273–2282, 2015.

[23] T. Alpcan and S. Buchegger, “Security games for vehicular networks,”
IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 280–290,
2011.

[24] M. Hamdi and H. Abie, “Game-based adaptive security in the internet
of things for ehealth,” in IEEE International Conference on Communica-
tions (ICC), Sydney, Australia, 2014, pp. 920–925.

[25] T. Basar and Z. Georges, “Handbook of dynamic game theory,” in
Springer International Publishing, Switzerland AG, 2018.

[26] A. Boualouache, S.-M. Senouci, and S. Moussaoui, “Towards an efficient
pseudonym management and changing scheme for vehicular ad-hoc
networks,” in IEEE Global Communications Conference (GLOBECOM),
Washington DC, USA, 2016, pp. 1–7.

[27] S. Kim, “Dynamic c-ran resource sharing scheme based on a hierarchical
game approach,” EURASIP Journal on Wireless Communications and
Networking, vol. 3, pp. 1–12, 2016.

[28] D. Niyato, A. V. Vasilakos, and Z. Kun, “Resource and revenue sharing
with coalition formation of cloud providers: Game theoretic approach,”
in Proceedings of the 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing , Newport Beach, CA, USA, 2011,
pp. 215–224.

[29] K. Han, X. Cai, and H. Rong, “An evolutionary game theoretic approach
for efficient virtual machine deployment in green cloud,” in IEEE Inter-
national Conference on Computer Science and Mechanical Automation
(CSMA), Hangzhou, China, 2015, pp. 1–4.

[30] A. Garnaev, M. Baykal-Gursoy, and H. V. Poor, “Security games with un-
known adversarial strategies,” IEEE transactions on cybernetics, vol. 46,
no. 10, pp. 2291–2299, 2016.

[31] N. Marchang, R. Datta, and S. K. Das, “A novel approach for efficient
usage of intrusion detection system in mobile ad hoc networks,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1684–1695,
2017.

[32] T. Lara, N. Merentes, E. Rosales, and M. Valera, “Some characterizations
of strongly convex functions in inner product spaces,” 2014.

[33] L. S. Shapley, “Cores of convex games,” in Intern. J. Game Theory, 1971,
pp. 12–26.

[34] F. Shen, K. Hamidouche, E. Bastug, and M. Debbah, “A stackelberg game
for incentive proactive caching mechanisms in wireless networks,” in
IEEE Global Communications Conference (GLOBECOM), Washington
DC, USA, 2016, pp. 1–6.

[35] D. Kar, F. Fang, F. Delle Fave, N. Sintov, M. Tambe, and A. Lyet,
“Comparing human behavior models in repeated stackelberg security
games: An extended study,” Artificial Intelligence, vol. 240, pp. 65 –
103, 2016.

[36] D. Kar, F. Fang, F. Delle Fave, N. Sintov, and M. Tambe, “A game of
thrones: when human behavior models compete in repeated stackelberg
security games,” in Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems, Istanbul, Turkey, 2015.

[37] T. Basar and G. Olsder, “Dynamic noncooperative game theory, philadel-
phia, pa, usa: Soc. ind,” Appl. Math, 1998.

[38] W. Saad, A. Sanjab, Y. Wang, C. Kamhoua, and K. Kwiat, “Hardware tro-
jan detection game: A prospect-theoretic approach,” IEEE Transactions
on Vehicular Technology, 2017.

[39] “Simulation of urban mobility (sumo). available on http://sumo-
sim.org/.”

[40] G. Remy, S.-M. Senouci, F. Jan, and Y. Gourhant, “Lte4v2x - collection,
dissemination and multi-hop forwarding,” in IEEE International Confer-
ence on Communications (ICC), Ottawa, Canada, 2012, pp. 1–6.

[41] “Cti project. http://www.irt-systemx.fr/project/cti/.”
[42] H. Sedjelmaci, I. H. Brahmi, A. Boudguiga, and W. Klaudel, “A generic

cyber defense scheme based on stackelberg game for vehicular network,”
in IEEE International Conference on Consumer Communications and
Networking Conference (CCNC), Las vegas, USA, 2018, pp. 1–6.

Hichem Sedjelmaci (M’14) received the Ph.D.
degree in telecommunication systems from Uni-
versity of Tlemcen, Algeria, in 2013. From 2013
to 2016, he was a postdoctoral researcher with
the DRIVE Laboratory, University of Burgundy,
Nevers, France. In 2017, he was a Research En-
gineer in cyber security at the Institute of Tech-
nological Research SystemX. In 2018, he joined
Orange Labs as a Senior Research Engineer
in cyber security and artificial intelligence. He
published his work in major IEEE conferences

and premium journals (IEEE TRANSACTIONS).

Imane Horiya Brahmi (M’16) received a B.S.
degree from University of Tlemcen, Tlemcen,
Algeria in 2008; an engineering degree (equiv-
alent to a Master Diploma) from Télécom Sud-
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