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Abstract

In biomedical image analysis, the applicability of deep learning methods is directly
impacted by the quantity of image data available. This is due to deep learning models
requiring large image datasets to provide high-level performance. Generative Adversarial
Networks (GANSs) have been widely utilized to address data limitations through the genera-
tion of synthetic biomedical images. GANs consist of two models. The generator, a model
that learns how to produce synthetic images based on the feedback it receives. The discrim-
inator, a model that classifies an image as synthetic or real and provides feedback to the
generator. Throughout the training process, a GAN can experience several technical chal-
lenges that impede the generation of suitable synthetic imagery. First, the mode collapse
problem whereby the generator either produces an identical image or produces a uniform
image from distinct input features. Second, the non-convergence problem whereby the
gradient descent optimizer fails to reach a Nash equilibrium. Thirdly, the vanishing gradi-
ent problem whereby unstable training behavior occurs due to the discriminator achieving
optimal classification performance resulting in no meaningful feedback being provided to
the generator. These problems result in the production of synthetic imagery that is blurry,
unrealistic, and less diverse. To date, there has been no survey article outlining the impact
of these technical challenges in the context of the biomedical imagery domain. This work
presents a review and taxonomy based on solutions to the training problems of GANs in
the biomedical imaging domain. This survey highlights important challenges and outlines
future research directions about the training of GANs in the domain of biomedical imagery.
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1 Introduction

Generative adversarial networks (GANs) refer to the class of generative models that gener-
ate synthetic data by learning through probability distributions of real data (Goodfellow
et al. 2014). GANs are designed with generator and discriminator models. The generator
produces realistic-looking synthetic data while taking random vectors as inputs. The dis-
criminator’s task is to classify real data from generated (synthetic) data. GANs use an
objective function as a joint loss function with minimax optimization. The generator aims
to produce realistic data and misguides the discriminator to classify it as real. Contrarily,
the discriminator aims to classify synthetic data as fake and real data as real. The dis-
criminator backpropagates its gradient feedback to the generator. The generator updates its
learning to generate realistic synthetic data based on the discriminator’s gradient feedback.
Ideally, the training of the GANs should be continued until it achieves the Nash equilib-
rium so that the actions of the generator and discriminator models do not affect each oth-
er’s performance. At this stage, the generator becomes well-trained so that it uses random
vectors to generate synthetic data that closely resemble the real data.

In healthcare technology, GANs have been widely utilized for several tasks such as pat-
tern analysis of biomedical imagery (Bhattacharya et al. 2020; Qin et al. 2020; Shi et al.
2020), electronic health records (Lee et al. 2020), as well as drug discovery (Zhao et al.
2020a). Recently, GANs have also been contributing in the context of Coronavirus disease
(COVID-19), i.e., disease detection from chest radiography (Waheed et al. 2020). In the
domain of biomedical imagery, the availability of data is an obstacle to the application of
deep learning. Deep learning models are composed of deep neural networks, that require
large training datasets for better predictive analytics (Bhattacharya et al. 2020). Thus,
enhancing the size of biomedical datasets is a challenging problem. Another dilemma in
the biomedical imaging domain is class-imbalanced datasets. It refers to the datasets with
skewed classes when dealing with multiple disease classes. With class-imbalanced data-
sets, deep neural networks train better on the classes with a large number of images rather
than the class with a limited number of images (Saini and Susan 2020). Data augmentation
is one of the potential solutions to address the class imbalance, as well as data limitation
problems (Qasim et al. 2020).

The utility of GANs in biomedical image analysis has been extensively investigated to
perform image recognition (Mao et al. 2020), image synthesis (Zhou et al. 2020), image
reconstruction (Li et al. 2021a), and image segmentation (Liu et al. 2019). GANs have
demonstrated a capacity to support deep learning models through the generation of syn-
thetic images and thus enlarging the size of biomedical datasets (Tegang et al. 2020; Han
et al. 2019; Pollastri et al. 2020). GANs suffer from training challenges such as mode col-
lapse, non-convergence, and instability problems. With these limitations, GANs can gener-
ate unrealistic, blurry, and less diverse images. The mode collapse problem occurs when
the generator produces similar output images while taking different input features. In the
domain of biomedical imaging, the mode collapse problem of GANs has been addressed
by using minibatch discrimination (Xue et al. 2019), skip connections (Segato et al. 2020),
VAEGAN (Kwon et al. 2019), varying layers of generator and discriminator (Qin et al.
2020), spectral normalization (Xu et al. 2020), perceptual image hashing (Neff et al.
2017), Gaussian mixture model as generator (Wu et al. 2018b), discriminator with con-
ditional information vector (Modanwal et al. 2021), self-attention mechanism (Saad et al.
2023; Abdelhalim et al. 2021), and adaptive input-image normalization (Saad et al. 2022).
The non-convergence problem occurs due to the lack of GAN’s ability to reach Nash
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equilibrium. This problem has been addressed by using modified training updates of gen-
erator and discriminator (Biswas et al. 2019), Whale optimization algorithm (Goel et al.
2021), and two time-scale update rules (Abdelhalim et al. 2021). The instability problem
of GANSs occurs due to the vanishing gradient problem. The Wasserstein loss (Xue et al.
2019; Segato et al. 2020; Kwon et al. 2019; Deepak and Ameer 2020), residual connections
(Wei et al. 2020), multi-scale generator (Wu et al. 2018a), and Relativistic hinge loss (Saad
et al. 2023) techniques are identified to address the instability problem in the biomedical
imagery.

Several survey articles have identified technical solutions to address the problems of
mode collapse, non-convergence, and instability (Wiatrak et al. 2019; Jabbar et al. 2021;
Sampath et al. 2021; Saxena and Cao 2021). In the general imaging domain, few survey
articles discuss each problem with solutions based on objective functions and modified
architectures of GANs while missing the definition, identification, and quantification meth-
odologies. The quantification methods are discussed as evaluation metrics in two survey
articles (Pan et al. 2019; Gui et al. 2021) while covering almost all aspects of each prob-
lem. The existing literature discussed these training challenges of GANs in general and did
not cover the significant solutions to address these challenges in the domain of biomedical
imaging. There are only four survey articles (Kazeminia et al. 2020; Singh and Raza 2021;
You et al. 2022; AlAmir and AlGhamdi 2022) that only cover these challenges with their
definitions and identifications in the biomedical imaging domain. These survey articles
outline application-based problems of GANs and have no information about quantification,
and solutions to the training challenges of GANSs in the biomedical imaging domain. In this
survey article, we define each training problem of GANs with their definition, identifica-
tion, quantification, and existing solutions. A detailed comparison of this work with the
existing survey articles is indicated in Table 1.

1.1 Contributions of this paper
The main contributions of this survey article are listed as follows:

e In this article, we discuss training challenges of GANs like mode collapse, non-conver-
gence, and instability in detail.

e We classify each of these training challenges into four different categories i.e., Defini-
tion, Identification, Quantification, and available solutions as shown in Fig. 1.

e We also review the existing approaches in terms of different biomedical imaging
modalities and classify them into applications-based taxonomies for each problem.

e This survey identifies research gaps and provides future research directions for GANs
in the domain of biomedical imagery.

1.2 Organization of the paper

The rest of the article is organized as follows; Sect. 2 presents the detailed working of
GAN:S including background, basic architecture, and popular variants. Section 3 highlights
the applications of GANSs in biomedical imagery. Section 4 discusses the benchmark evalu-
ation metrics used for quantifying the training challenges of GANs. Section 5 discusses
the mode collapse problem definition, identification, quantification, and existing solutions.
Section 6 elaborates on the non-convergence problem in the training of GANS, its iden-
tification methods, and how to quantify the problem and its possible existing solutions.
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Fig. 1 Taxonomy of training challenges in GANs for biomedical image analysis

Section 7 explains the instability problem in the training of GANs while providing a litera-
ture review of existing identification and quantification methods, and possible solutions in
biomedical imagery. Section 8 provides a comparative analysis of existing GANSs architec-
tures for the biomedical imaging domain. Section 9 discusses the important challenges and
future research directions. Finally, Sect. 10 concludes the paper.

@ Springer



19 Page 6 of 62 M. M. Saad et al.

2 Generative adversarial networks

GANs are advanced machine learning models that are introduced to generate synthetic
images by learning the probability distributions of real images. GANs work as learning
agents that try to produce realistic images using probability distributions. To gain an under-
standing of GANS; the architecture, training, objective function, and GANs variants are
elaborated as follows.

2.1 Architecture of GANs

GANSs are composed of two models; the generator and the discriminator. The generator’s
primary task is to create synthetic data that resembles the real data distribution such as
images, sounds, or texts (Wolterink et al. 2021). For image data, it takes random vector
z with probability distribution p, (usually drawn from a normal distribution) as input and
generates synthetic image samples G(z) with probability distribution p,. The generator is
designed with a series of learnable layers, typically consisting of fully connected (dense)
or transposed convolutional (deconvolutional) layers. These layers help the generator to
upsample the random noise vector z and generate synthetic images in the desired format.
The discriminator consists of learnable layers, such as fully connected or convolutional
layers for downsampling the images. The discriminator distinguishes the synthetic image
samples from real samples. It aims to output high values (close to 1) for real image data
and low values (close to 0) for synthetic image data. Goodfellow et al. (2014) proposed the
idea of vanilla GANs (baseline GAN) as shown in Fig. 2. The vanilla GAN’s generator and
discriminator models are composed of fully connected layers using multi-layer perceptron
(MLP) neural networks.

2.2 Training of GANs

In GANSs, adversarial training is the fundamental training technique that involves train-
ing two neural networks, the generator, and the discriminator, in a competitive man-
ner, where they learn from each other through an adversarial process. A GAN’s training

Backpropagating D loss to update discriminator weights
|

X

I
| |
Real | -m
Image Dataset Sample v |
I
7l
: Discriminator (D) Joint Loss
w T
Fake ;
Generator (G) Sample GL
| oss I
Pz Pg

Backpropagating G loss to update generator weights

Fig.2 Architecture of vanilla GANs. The generator G and the discriminator D are trained in an adversarial
manner so that G can generate plausible fake samples while D can classify them from real samples. G uses
random vector input z for generating fake samples. G loss is described as log(1 — D(G(z))) while D loss is
log(D(x)). The figure is redesigned from Goodfellow et al. (2014)
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initializes with random weights of the generator and the discriminator. The generator
takes the random noise vector z as input and produces synthetic images. The syntheti-
cally generated images are fed into the discriminator, along with real images from the
actual dataset. The discriminator’s task is to distinguish between real and synthetic
images and assigns probabilities to each image sample being real or fake. The gen-
erator aims to generate images that are realistic enough to misguide the discriminator
into classifying it as real. It tries to minimize the discriminator’s ability to differentiate
between real and synthetic image samples. The discriminator tries to correctly classify
real images as real (assigning high probabilities) and synthetic images as fake (assign-
ing low probabilities) (Wiatrak et al. 2019; Jabbar et al. 2021; Goodfellow 2016).

The training process of GANs continues iteratively, with the generator and dis-
criminator playing a minimax game against each other. The generator aims to generate
images that look increasingly realistic, while the discriminator strives to become better
at distinguishing real from synthetic images. The training converges to Nash equilib-
rium when the generator generates images that are indistinguishable from real images,
and the discriminator can no longer differentiate between the real and synthetic images.
The key idea behind adversarial training in GANSs is that the generator gets better at
producing realistic images by trying to outsmart the discriminator, and the discrimina-
tor becomes more adept at distinguishing real from fake images by learning from the
generator’s synthetic image samples. This competition and feedback loop between the
generator and discriminator lead to the emergence of a well-trained GAN capable of
generating high-quality synthetic images (Salimans et al. 2018; Saxena and Cao 2021;
Wang et al. 2021).

2.3 Objective function of GANs

The objective function of a GAN is defined by the distance between the probability
distribution of the generated samples (p,) and the probability distribution of real sam-
ples (p,). The binary cross-entropy loss is used to evaluate the objective function. The
binary cross-entropy V(D, G) is a joint loss function of the discriminator and the gen-
erator. It minimizes the Jensen—Shannon divergence (JSD) between the distribution of
generated data as well as real data distribution. The JSD is defined as Eq. (1) (Goodfel-
low et al. 2014).

ISD(P,|IP,) = %KL(P,IIPA) + %KL(PXHIPA) 0

In Eq. (1), KL is defined as the Kullback-Leibler divergence, P, and P, represent the real
and generated data distributions. P, denotes the average distribution between real and gen-
erated distributions. The objective function becomes minimax V(D, G) of G and D as pre-
sented in Eq. (2) reproduced from Gui et al. (2021).

minmax V(D,G) = E,, [logD(x)] +E,., [log(l = D(G(2)))] 2)
In Eq. (2), minimax is considered as a game in the context of GANs. Generally, the min-
imax is an optimization problem that aims to optimize the objective function using the
given constraints of G loss and D loss. The use of the gradient descent method for an
optimization of the objective function is discouraged as it may converge the function to
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a saddle point. At the saddle point, the objective function gives a minimal value for one
model’s weight parameters while the maximal value for the other model’s weight param-
eters. Hence, the objective function is optimized using the minimax game to find a Nash
equilibrium.

2.4 Variant of GANs

In this section, we discuss the most commonly practiced variants of GANs that are pro-
posed with some advancement in architecture and loss functions to the vanilla GAN to
address the underlying training challenges.

2.4.1 Deep convolutional GAN (DCGAN)

One of the popular variants of GANs is deep convolutional GAN (DCGAN) (Radford et al.
2015). The DCGAN adopted convolutional neural networks instead of fully connected net-
works as in vanilla GAN for the generator and the discriminator. Besides, batch normaliza-
tion is used in most of the layers. The ADAM optimizer (Kingma and Ba 2014) is adopted
instead of SGD. DCGAN provides a meaningful solution in terms of a stable architecture
as compared to a vanilla GAN. However, DCGAN lacks in generating diverse, realistic,
and free of artifacts images which are fundamental challenges that need more advanced
solutions.

2.4.2 Conditional GAN (CGAN)

In vanilla GAN, the generator produces synthetic images only based on latent input z which
is considered to be limited information for high-performance image synthesis. Authors
Mirza and Osindero (2014) proposed an idea of conditional GAN that utilizes additional
information y together with the random vector input z as well as input to the discriminator.
The y can be a class label or any other conditional information that acts as an additional
information feed to the generator as well as the discriminator. The CGAN architecture is

Backpropagating D loss to update discriminator weights

Image D S. |

T o | o |
|T|—‘LGenerator(G) Sarnple —]

Pz

o Backpropagating G lossto update generator weights !

Fig.3 Architecture of CGANs. The generator G and the discriminator D are trained in an adversarial man-
ner so that G can generate plausible fake samples while D can classify them from real samples. y is a class
label or any additional information conditioned with input samples for G and D. G loss is described as
log(1 — D(G(z))) while D loss is log(D(x)). The figure is redesigned from Mirza and Osindero (2014)
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presented in Fig. 3. The modified objective function is shown in Eq. (3) that is reproduced
from Gui et al. (2021). The idea of CGAN has proven to be advantageous in terms of image
synthesis as it can generate realistic and diverse images. CGAN shows a more stable train-
ing behavior as compared to vanilla GAN and DCGAN.

mén max V(D,G) =E,_, [logDx|y)]+E._, [log(1 — D(G(z|y)] 3)

2.4.3 Wasserstein GAN (WGAN)

To address the instability problem in vanilla GANs caused by the use of Jensen—Shannon
divergence, authors in Arjovsky et al. (2017) proposed the idea of measuring the distance
between two data distributions instead of minimizing the divergence. So, an Earth-mover
(EM) or Wasserstein-1 distance is introduced in the Wasserstein-GAN (WGAN). The Was-
serstein-1 distance is described as a metric instead of cross-entropy to measure the loss for
optimizing the objective function. The objective function of the WGAN is shown in Eq. (4)
that is reproduced from Wang et al. (2021).

W(pr’pg) - }'El_[lr(lpf;,ﬁg) [E(x,y)Ny ”X - y” (4)
In Eq. 4), l'[(p,, pg) denotes all the joint distributions and y(x, y) based on the marginals
of p, and p,. During the training of GAN, when there is no overlap between p, and p,, the
Jensen—Shannon divergence returns no values. However, the EM distance can reflect the
distance measured continuously. Thus, WGAN can propagate meaningful gradient feed-
back to train the generator and avoid vanishing gradient problems. The main contribution
of the WGAN is the use of a discriminator as a regressor instead of a binary classifier.

2.4.4 StyleGAN

StyleGAN is a state-of-the-art GAN variant that was proposed with several key features
to generate diversified and high-quality synthetic images (Karras et al. 2019). The archi-
tecture of StyleGAN is designed with a style generator, adaptive instance normalization
(AdalN), and a progressive growing training technique as depicted in Fig. 4. Unlike tradi-
tional GANs where the generator directly maps noise to images, StyleGAN separates the
learned “style” (high-level features) from the learned “structure” (low-level features) of the
image using a mapping network f. This separation allows for more control over the genera-
tion process and results in more realistic and appealing images. AdalN is used to combine
the learned style and structure information in StyleGAN. It aligns the statistics (mean and
variance) of the intermediate feature maps to match the desired style (Wang et al. 2021).
The progressive growing training of StyleGAN starts with a low resolution and gradually
increases the resolution of generated images during training. This approach helps stabi-
lize the training process and allows the generator to focus on generating coarse details first
before adding finer details, resulting in more coherent and realistic images.

StyleGAN is known for its ability to generate diverse and unique images from the same
latent code. By controlling the style and structure separately, it allows for the manipulation
of individual aspects of the generated image, such as changing the pose, color, and facial
expressions while keeping the underlying structure consistent (Saxena and Cao 2021).
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Fig.4 Generator architecture of StyleGAN. This figure is redesigned from Karras et al. (2019)

2.4.5 CycleGAN

The variants of GANSs, such as vanilla GAN, DCGAN, CGAN, and WGAN, are limited
to the generation of a single image domain using latent input z. However, architectures of
these GANs variants were designed to synthesize training images to similar domains and
synthetic images have the same mapping as real training images.

The idea of generating images of different mappings and different modalities as com-
pared to the real training images is known as image-to-image translation (Zhu et al. 2017).
For this purpose, CycleGAN architecture is proposed. The CycleGAN learns a mapping
using the generators G: A — B such as image distributions of A from G(A) must be indis-
tinguishable from the image distributions of B using an adversarial loss (Singh and Raza
2021). To this end, two generators and two discriminators with a cycle consistency loss
are proposed in CycleGAN architecture as depicted in Fig. 5. In CycleGAN, the generator
G, and discriminator Dy work for a single pair using an adversarial loss Lg AN(GAB, DB)
as defined in Eq. 5. However, the adversarial loss for reverse mapping pair G4 and D,
is denoted as LGAN(GBA,DA). So, a cycle-consistency loss is proposed to minimize the
reconstruction error from image translation of one domain to another domain. The cycle-
consistency loss is defined in Eq. 6. The final loss of the CycleGAN is formulated as Eq. 7.

LGAN(GABs DB) =E, p,0) [log DB(b)] +E.p,@ [1 —log (DB(GAB(Q)) )] 5)
Ly (Gap: Gpa) = Epep [a = Gpa (Gap@) 1l + Eyp,i) [6 = Gap(Gra®) 1] (6)

L(GAB’ GBA’DA’DB) = LGAN(GAB’DB) + LGAN(GBA’DA) + Lcyc(GAB’ GBA) @)
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Image Xq Discriminator (D,4) — Real / Fake

Dataset A

Generator (G 4p) xga —>

Generator (Gp,) Xgb |—>
Xb Discriminator (D) —>Real / Fake

Image
Dataset B

Fig.5 Architecture of CycleGAN. The generators G,; and Gy, are trained in an adversarial manner by tak-
ing real samples from one domain as input and generating plausible fake image samples for another domain
as output. x, and x,, are two different unaligned image domains. The discriminators D, and D distinguish
the generated fake samples from real samples and provide feedback to the generators to update their learn-
ing accordingly. This figure is redesigned from Singh and Raza (2021)

G*

* 5 Gy = arg min max L(G,g, Gy, Dy, Dy) (8)

G/\B’GBA DA*DB
The CycleGAN is trained using the objective function defined in Eq. 8. The Egs. 5, 6, 7,
and 8 are reported from Singh and Raza (2021).

2.4.6 DiscoGAN

DiscoGAN is another unsupervised GAN variant used for image-to-image translation
tasks, but it focuses on discovering cross-domain relations between two distinct domains
(Kim et al. 2017). The main goal of DiscoGAN is to learn the cross-domain relationships
between two unpaired datasets, without using any paired data during the training process.
DiscoGAN uses reconstruction losses to discover relations among different domains as
depicted in Fig. 6. It aims to learn the shared structure between two domains, allowing for
translation between the two domains in both directions.

2.4.7 U-Net

The U-Net is a popular model that is widely used for image segmentation tasks in the
domain of biomedical image analysis (Punn and Agarwal 2022). In GANs, U-Net is inte-
grated into GAN architectures to perform segmentation tasks efficiently for biomedical
images (Mubashar et al. 2022).

U-Net is a U-shaped network that combines low-level and high-level information to extract
the complex features of segmented regions. The U-Net is proposed by Ronneberger et al.
(2015). The architecture of U-Net is depicted in Fig. 7. U-Net is designed with a symmetrical
ordering of encoder-decoder blocks to distinguish every pixel by extracting multi-scale feature
maps using encoding the input and decoding it to output using the same resolution (Punn and
Agarwal 2022). The U-Net is operated to segregate the overlapping regions using background
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Generator (Gp,)

Generator (G4p)

Fig.6 Architecture of DiscoGAN. The generator and discriminator models are designed with reconstruc-
tion losses (L,,,,) to discover the cross-domain relationship between two unpaired, unlabeled datasets (Kim
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Fig.7 Architecture of U-Net (Ronneberger et al. 2015)

pixels with an individual loss of each pixel. This process is defined through an energy function
E as represented in Eq. 9.

(dy () + dy ()’

E = 2 w.(x) +wy-exp| — 752

xeQ

10g (psey(¥)) )
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In Eq. 9 reported from Punn and Agarwal (2022), softmax is defined as Eq. 10.

K
P = exp (a,(x))/ 2 exp (ap (x)) (10)

k'=1

In 9 and 10, The w, indicates a weight map while d, and d, denote the distances to the
boundary pixels at the first and second nearest positions respectively. w, and Q are the con-
stants. The a,(x) denotes an activation for channel k with pixel x € Q and Q € 7>

3 Applications of GANs in biomedical image analysis

In the domain of biomedical imaging, GANs have been utilized in several applications
such as image synthesis (Kazeminia et al. 2020), image segmentation (Roman et al. 2020),
image reconstruction (Yedder et al. 2021), image detection (Yi et al. 2019), image denois-
ing (Tian et al. 2020), image super-resolution (Li et al. 2021b), and image registration
(Haskins et al. 2020). The performance of these applications is affected by the training
challenges of GANs. This section presents a high-level discussion on the impact of train-
ing challenges of GANs for the applications such as image synthesis, image segmentation,
image reconstruction, image detection, image denoising, image super-resolution, and image
registration in biomedical image analysis. How these training challenges affect applications
is also discussed. A few state-of-the-art survey articles are identified to get insights into
these applications for readers that are shown in Fig. 8.

3.1 Image synthesis

GAN:Ss are used to generate synthetic images of training images. Conventionally, GANs are
introduced as unsupervised models and can be leveraged with unannotated image datasets.
Therefore, synthesizing training images using GANs is known as image synthesis. Training
challenges of GANs can affect the synthetic images during the image synthesis process.
For example, the generation of similar synthetic images for distinct input images, blurry
images, and low-quality images indicates the training challenges of GANs. GANs have
been used for two types of image synthesis; unconditional image synthesis and conditional
image synthesis (Singh and Raza 2021; Kazeminia et al. 2020; Yi et al. 2019). Each type of
image synthesis is discussed as follows.

[ Applications of GANs in Biomedical Image Analysis ]

Image Image Image Image Synthesis Image Image Image Super
Reconstruction Segmentation Denoising — Detection Registration Resolution (Li
(Yedder et al. 2021) (Yi et al. 2019) (Kazeminia Conditional (Yi et al. 2019) (Haskinset al. 2020) et al. 2021b)
(Nalepa et al. 2019) et al. 2020) Image (Kazeminia
(Romin et al. 2020) || (Tian et al. 2020) Syt et al. 2020)

(Singh and

Igbal et al. 2022
(nfeledd ) Raza 2021)

Unconditional
Image

Synthesis
(Yi et al. 2019)
(Kazeminia
et al. 2020)

Fig. 8 Applications of GANs in biomedical image analysis
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3.1.1 Unconditional image synthesis

In unconditional image synthesis, GANs rely only on random noisy inputs in the latent
space without any prior conditions to generate new synthetic image samples. The
unconditional image synthesis of biomedical images is affected most by the training
challenges of GANs such as mode collapse and training instability. For example, direct
generation of magnetic resonance images, computed tomography images, cell images,
and dermoscopic images encounter these training challenges. Being an unsupervised
framework, this approach has been widely utilized for biomedical image analysis to
address data limitation and class imbalance issues. A detailed discussion and technical
papers can be found in Kazeminia et al. (2020), Yi et al. (2019).

3.1.2 Conditional image synthesis

In conditional image synthesis, GANs consider some prior conditional information
together with z to generate new synthetic images. This type of image synthesis faces
training challenges of GANs during the image-to-image translation tasks. When a GAN
generates a biomedical image from the same modality input or cross-modality input
images, it can miss salient features of input images during the training to translate into
new images. Due to instability problems, the quality of synthetic images can be affected
during the generation of biomedical images. There are two types of applications in con-
ditional image synthesis. Generation of new images from real images with some prior
conditions in the same modalities such as CT to CT, MRI to MRI, and PET to PET.
Generation of new images from different modalities like MRI to CT, MRI to PET, etc.
The survey article Singh and Raza (2021) discussed these applications in detail and can
be studied.

3.2 Image segmentation

GANSs provide a significant contribution to the domain of biomedical imagery for image
segmentation tasks. It has been utilized for the segmentation of tumors, pathology,
and lesions from different body parts like the brain or liver, etc. GANs use segmented
masks with input images to generate synthetic images with the segmentation of the tar-
get masks. Sometimes, during the training of GANs, the segmented masks are difficult
to learn and GANs generate poorly segmented synthetic images or low-quality images.
The literature Yi et al. (2019), Nalepa et al. (2019), Roman et al. (2020), Igbal et al.
(2022) can be explored for more discussion on biomedical image segmentation.

3.3 Image reconstruction

GANSs have been utilized to improve the quality of reconstructed images like estimating
full-dose CT images from low-dose CT images with reduced aliasing artifacts. Usually,
GANs do not reduce these aliasing artifacts effectively due to the training instability
problem. GANSs face difficulty in generating plausible images reconstructed from train-
ing images due to poor image quality. The mode collapse occurs during the training of
GANSs while learning the distribution of low-quality images. The reader can be referred
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to the survey article Yedder et al. (2021) for a detailed insight on biomedical image
reconstruction using GANs.

3.4 Image detection

GANSs have been used for unsupervised anomaly detection in biomedical imagery. The dis-
criminator model can be used to detect anomalies like lesions or tumors. This contribution
helps to work with unannotated data and address the problem of anomaly detection. The
survey articles Kazeminia et al. (2020), Yi et al. (2019) are identified for more detail on the
underlying GANs application.

3.5 Image denoising

Image denoising techniques are required to remove the noise and recover the original latent
information from the noisy images. GANs can be used as an excellent tool to produce sharp,
plausible, and noise-free images. A powerful GAN model is required to denoise biomedical
images because it is usually incorporated with the training challenges of GANSs. These chal-
lenges can affect the denoising of biomedical images as GANs are unable to learn low-qual-
ity or noisy images effectively and can reflect a poor generation of output images. A more
detailed overview of biomedical image denoising techniques with the utility of GANs can be
studied in the literature Kazeminia et al. (2020), Tian et al. (2020).

3.6 Image super resolution

GANSs can be utilized to produce super-resolution images from low-resolution images. The
training instability problem should be addressed completely to achieve better high-resolution
biomedical images as the optimality of the GANs is difficult to achieve. The mode collapse
and non-convergence problems can also degrade the quality of synthetic images. GANs have
performed various super-resolution tasks in biomedical image analysis and the reader can find
a detailed review of those tasks in the review paper Li et al. (2021b).

3.7 Image registration

Conventional registration techniques suffer from parameter dependency problems and high
optimization loads. GANs have good capabilities of image transformations that can serve as
excellent candidates for the extraction of a more optimal registration mapping. GANs have
limitations of training challenges as they can miss the location of an object or feature in the
biomedical image during the image registration process. Usually, 3D volumes of biomedical
images face these challenges as the generator can not learn 3D volumes effectively to generate
diverse, un-blurred, and high-quality synthetic images. More details can be found in the sur-
vey article of Haskins et al. (2020).
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4 Evaluation metrics

Several evaluation metrics have been proposed to assess the technical training challenges
of GANSs, such as mode collapse, non-convergence, and unstable training. These metrics
include Inception Score (IS), Maximum Mean Discrepancy (MMD), Multi-scale Structural
Similarity Index Measure (MS-SSIM), Fréchet Inception Distance (FID), Peak signal-to-
noise ratio (PSNR), Dice Score (DS), and classification performance metrics (Precision
and Recall). Each metric is discussed in detail as follows.

4.1 Inception score (IS)

Inception score is a metric used for the evaluation of GANs (Salimans et al. 2016). It pro-
vides an assessment of generated images for high-quality and diverse characteristics. IS
utilizes a pre-trained Inception-Net (Szegedy et al. 2016) and measures the KL divergence
between class conditional probability distribution p(y | x) of generated sample and the
marginal probability distribution p(y) obtained from a set of generated images.

exp (E[KL(p(y | 9)llp(y)]) = exp (H() — E[H(y | x)]) (11)

In Eq. (11) that is reproduced from Borji (2019), p(y | x) shows the class conditional prob-
ability distribution with image X, p(y) is a marginal probability distribution, and H(x)
denotes the entropy of variable x (Borji 2019). IS measures the lowest score as 1 while the
highest score depends on the number of classes of the dataset. The higher IS score shows
that the model can generate high-quality as well as diverse images.

4.2 Maximum mean discrepancy (MMD)

The maximum mean discrepancy is used to measure the dissimilarity between real image
distribution p, and generated image distribution p, (Gretton et al. 2012). The higher value
of MMD indicates that the generator is collapsing and doesn’t generate realistic and diverse
images.

MMD(Pr, Pg) = ||ug — g2, (12)

Mathematically, it uses Hilbert’s space of functions. In Hilbert space functions, two func-
tions are supposed to be point-wise closed if they are closed in the norm (Segato et al.
2020). So, MMD can be calculated by measuring the squared distance between the embed-
dings of p, and p, as shown in Eq. (12) that is reproduced from Borji (2019).

4.3 Multi-scale structural similarity index measure (MS-SSIM)

MS-SSIM is a metric that is used to assess the diversity of synthetic images in GANSs.
MS-SSIM is introduced to measure the similarity score using human perception similarity
analysis. It computes the similarity between two images with the help of pixels and struc-
tures (Odena et al. 2017). MS-SSIM considers luminance (realizing the brightness of a
color) and contrast estimations for a metric score. Luminance (/), contrast (c), and structure
(s) can be computed using Eq. (13) as reproduced from Borji (2019).
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2ppy + Cy 20,0, + C, o, +Cs

T = T Sy = 2
ﬂ%+u§+C1 (x.5) 0'3+0'y2+C2 x5 0.0, +C; (13)

I(x,y) =
In Eq. (13), x and y are two images. u, and u, represent the mean, whereas o, and o, denote
the variance (standard deviation) of pixel intensities. The correlation between correspond-
ing pixels is represented by o,,. For the numerical stability of the fractions, constant C is
added in all three quantities. The single-scale similarity index is then computed by Eq. (14)
[reproduced from Borji (2019)] by considering the fixed distance perspective, as well as
sampling density of images (Wang et al. 2004).

SSIM(x, y) = I(x, y)*C(x, y)S(x, ) (14)

The multi-scale SSIM is a variant of the single-scale SSIM metric. It considers all scales
of iteratively downsampled images for computing contrast and structural scores. The
luminance quantity is measured at the last iteration known as the coarsest scale (M). Con-
versely, it gives weightage to the contrast and structure at each scale. The MS-SSIM is
computed by Eq. (15) as reproduced from Borji (2019).

M

MS-SSIM(x, y) = 1, (x, ) [ ] €, 3)%8,(x, 3 (15)
j=1

The range of MS-SSIM scores lies between 0.0 and 1.0. An important point to note is that
a higher MS-SSIM score shows lower diversity between images of the same class. This
metric is useful for evaluating GANs to compute the diversity between generated images of
a single class.

4.4 Fréchet inception distance (FID)

FID is an evaluation metric used to assess the quality of synthetic images. It is proposed by
Heusel et al. (2017). FID computes the mean and covariance of synthetic and real images
as shown in Eq. (16) that is reproduced from Borji (2019). It visualizes an embedded layer
that contains a set of synthetic images in the Inception-Net and uses it as the continuous
multivariate Gaussian.

[SIE

FIDG5) = ||, = |3 + Te(%, + 2, - 2(5,%,)7) (16)
In Eq.(16), r and s shows real and synthetic images while ( My Z,) and ( Hg, ;) denote mean
and covariances of real and synthetic images. FID score measures the distance between
real and synthetic images in GANs. A higher FID score shows a larger distance between
synthetic and real data distributions (Borji 2019).

4.5 Peak signal-to-noise ratio (PSNR)

In GANs, PSNR is used to check the quality of synthetic images to the corresponding real
images. PSNR is applied to monochrome images. It is measured in decibels (dB). The
higher value of PSNR represents a better quality of synthetic images. PSNR is computed as
shown in Eq. (17) reproduced from Borji (2019).
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PSNR(Z,K) = 101 MAX;
(I,K)= 0810 W W)
By simplifying,
PSNR(/,K) = 20log,, (MAX,) — 201log,, (MSE, x) (18)
Whereas
1 m—1 n—1
MSE, , = — I(m, n) — K(m, n))* 19
k= 25 g( (m, n) — K(m, n)) (19)

The Eqgs. (17), (18), and (19) are reported in Borji (2019). I and K represent two mono-
chrome images. In Eq. (18), MAXI denotes the highest possible pixel value of an image
such as 255 in the case of 8-bit representation.

4.6 Dice score (DS)

Dice score is a popular metric that is used to evaluate the targeted segmented images as com-
pared to their real ground truth images (Bertels et al. 2019). In GANs, DS is also utilized to
assess the quality of synthetic segmented images. DS compares the area of segmented regions
of the generated synthetic images and real ground truth images with the total area of both
regions (Ghaffari et al. 2019). The formula for DS is calculated using Eq. 20:

XY, pred

Ytrue

DS =2x (20)

Yiwe ¥ YVpreg + €

true

In Eq. 20 reported in Ghaffari et al. (2019), Y,,,,, indicates the ground truth, ¥, , indicates
the predicting label and ¢ is a small number used for avoiding division by zero. Perfect seg-
mentation is indicated by the DS of 1.0.

4.7 Classification performance metrics (precision and recall)

In GAN:S, classification metrics such as recall and precision are also used to evaluate the qual-
ity and diversity of synthetic images (Borji 2019). In literature, studies have been proposed to
measure the recall and precision to quantify the mode collapse and instability problem (Lucic
et al. 2018; Sajjadi et al. 2018). In Lucic et al. (2018), authors argued that these classification
metrics can evaluate the quality and diversity of synthetic images. Sajjadi et al. (2018) argued
that high precision and low recall scores indicate low quality and diversity of synthetic images
while higher quality and diversity of synthetic images are indicated by low precision and high
recall scores.
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5 The mode collapse problem
5.1 Definition

The basic purpose of the GANSs is to produce realistic and a variety of synthetic output
images. The synthetic images should be of different styles (modes of distribution) for
each random input. In practice, the generator learns to produce synthetic images just
to misguide the discriminator for being classified as real. Once the generator finds the
best way to fool the discriminator by producing particular plausible images, it focuses
on the generation of similar images repetitively. The discriminator gets fooled each
time and classifies the synthetic images as real. Eventually, the discriminator gets stuck
in this trap and is unable to get out of this trap. Consequently, the generator starts pro-
ducing a similar style of images. The underlying problem is known as mode collapse
(Goodfellow 2016).

5.2 Identification

The mode collapse problem is identified during the training of GANs by looking at the
nature of generated images. The mode collapse refers to the generation of less diversified
synthetic images where salient features of input (real) images are overlooked by the gener-
ator during the training of GANs (Saad et al. 2022). Therefore, GANs with mode collapse
generate synthetic images with similar distribution modes repetitively rather than having
input images with diverse distribution modes as indicated in Fig. 9. The mode collapse
problem can be divided into two categories based on the number of classes within the data-
sets (Alotaibi 2020). Firstly, when the generator produces a similar style of output images
for multi-class input images then it will affect the inter-class diversity, and the problem
is known as inter-class mode collapse. Secondly, when the generator produces a similar
style of output images for single-class input images then the problem is termed as intra-
class mode collapse and affects the intra-class diversity. The mode collapse problem can
also be identified using the loss curves of the generator during the training of GANs. Fig-
ure 10 illustrates the mode collapse during the training of GANs using a non-converging

Synthetic Images

3 4

Real Images

Mode Collapse
in GANs

Fig.9 Identification of mode collapse in GANs for X-ray image synthesis. The red areas highlighted illus-
trate the repetition of synthetic X-ray images with a similar distribution of features such as lungs. The chest
bones are also suppressed indicating the occurrence of a mode collapse problem in GANs
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Generator and Discriminator Loss During Training
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Fig. 10 Identification of the mode collapse problem using the non-converging generator loss of GANs for
X-ray image synthesis. The generator loss depicted by label (G) illustrates the non-converging behavior as
compared to the discriminator losses (D_real and D_fake)
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Fig. 11 Identification of the no-mode collapse in GANs for X-ray image synthesis. The generator loss
depicted by label (G) illustrates the converging and balanced behavior as compared to the discriminator
losses (D_real and D_fake)
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generator loss (G) for X-ray image synthesis. Consequently, a converging generator loss
(G) in Fig. 11 shows the balanced training of GANs indicating no mode collapse for X-ray
image synthesis.

5.3 Quantification

The diversity and similarity of generated synthetic images can be computed by several
evaluation metrics. The occurrence of mode collapse and diversity of synthetic images is
quantified by MS-SSIM (Wang et al. 2003; Odena et al. 2017) using image similarity fea-
tures while IS (Salimans et al. 2016), MMD (Gretton et al. 2012), and FID (Heusel et al.
2017) using distance measures as discussed in Sect. 4. However, PSNR, SSIM, and clas-
sification metrics such as recall and precision are also used to quantify the diversity of
synthetic images.

5.4 Solutions to the problem
5.4.1 Regularization

In deep learning models, we aim to find minimum loss that is difficult to achieve when
using large weight sizes. This will lead the model to overfit the data and provide poor pre-
diction results. To alleviate this problem, a regularization term is used to reduce the weight
size of the network or limit the model capacity (Goodfellow et al. 2016). In GANs, neural
networks are used in the generator as well as in the discriminator. So, when the discrimina-
tor produces ambiguous gradients as feedback to the generator continuously, the generator
learns to generate similar images again and again to fool the discriminator which leads to
the mode collapse problem. Here, regularization is used as weight normalization.

5.4.1.1 Weight normalization (WN) In GANs, weight normalization (WN) uses specialized
training algorithms to update the weight matrices regularly while training the GANs. WN
does not use additional loss. It backpropagates the gradients by computing them accord-
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(a) Discriminator without Spectral Normalization (b) Discriminator with Spectral Normalization

Fig. 12 Spectral normalization utilizes the largest singular values of W; as their spectral norms (¢ W;) to
divide the actual gradient weights of the discriminator. The figure is redesigned from Miyato et al. (2018)
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ing to the normalized weights during the training of GANs (Lee and Seok 2020). Several
normalization techniques such as spectral normalization (Miyato et al. 2018), batch nor-
malization (Radford et al. 2015), and self-normalization (Klambauer et al. 2017) have been
proposed to use as a weight normalization in GANS.

Xu et al. (2020) alleviated the mode collapse problem in a GAN using spectral nor-
malization for a super-resolution of low-dose X-ray images. Spectral Normalization
is a type of weight normalization that employs the spectral norm of weight matrices
as shown in Fig. 12 while training GANs. The spectral norm is equivalent to the L2
norm and corresponds to the largest singular vector. The largest singular vector can be
approached to the Lipschitz constant. The spectral normalization is used to normalize
the weight matrices in the discriminator of the proposed Spectral Normalization Super
Resolution GAN (SNSRGAN) which controls the Lipschitz constant to 1. The authors
utilized IS and MS-SSIM scores to evaluate the diversity of super-resolution synthetic
images generated by the SNSRGAN. Results demonstrate that SNSRGAN achieved
improved scores of IS with 6.56 and MS-SSIM with 0.986 as compared to the baseline
SRGAN (Ledig et al. 2017).

5.4.1.2 Input normalization (IN) Input normalization refers to the normalization of input
image features so that a GAN can better train on those normalized images and alleviate the
mode collapse problem for biomedical image synthesis.

A similar idea of input image normalization is proposed by Saad et al. (2022) to
the DCGAN for generating diversified chest X-ray images. The authors alleviated
the mode collapse in the DCGAN using a preprocessing technique namely an adap-
tive input-image normalization (AIIN). The AIIN normalizes the input X-ray images
using a contrast-based histogram equalization to highlight the diverse features of X-ray
images as depicted in Fig. 13. A DCGAN learns X-ray image features more accurately
with these normalized images having highlighted features and can generate improved
diversified X-ray images. Several experiments with varying batch sizes, window sizes,
and contrast thresholds have been conducted. They used MS-SSIM and FID evaluation
metrics to evaluate the mode collapse problem in DCGAN and the diversity of syn-
thetic images.

The authors demonstrated improved results of AIIN-DCGAN over DCGAN with
high diversity scores using the MS-SSIM and FID evaluation metrics. Moreover, syn-
thetic images with the best MS-SSIM and FID scores are used to augment the imbal-
anced dataset. A baseline CNN classifier is trained on the standard and augmented
datasets to compare the classification score including accuracy, recall, specificity, etc.
The improved accuracy of 91.50% and specificity of 0.79 are achieved with the aug-
mented dataset having AIIN-DCGAN synthetic images as compared to the alternate
datasets.

Actual Images Normalized Images

m—» W”}?\f::ﬁ)sue > Adaptive Histogram Equalization ~ Contrast Threshold =~ %

Fig. 13 The block diagram of an adaptive input-image normalization. The figure is redesigned from Saad
et al. (2022)
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Fig. 14 The generator architecture of MDGAN. The figure is redesigned from Wu et al. (2018b)
5.4.2 Modified architecture

In GANS, if a new architecture is defined with an alternative generator or discriminator
or both as compared to the vanilla GAN then we describe it as modified architecture.

5.4.2.1 Generator An alternative generator introduced in the proposed architecture of
GAN is described as the modified generator. To avoid the mode collapse problem, a widely
adopted approach is to use multiple generators instead of a single as in vanilla GAN which
has proved effective to alleviate the problem (Hoang et al. 2018). However, optimizing mul-
tiple generators is complicated and costs extensively large computations.

To address this limitation, Wu et al. (2018b) proposed the idea to use multiple distri-
butions instead of using multiple generators to synthesize human cell images. A Gauss-
ian Mixture Model (GMM) based generator is used to cover each data distribution in the
latent space as indicated in Fig. 14. It helps the proposed MDGAN to generate diverse
image samples using a mixture of data distributions. Moreover, the authors argued that
more distributions can aid in generating more diverse synthetic image samples but can lead
to huge computational costs. The generated human cell images are then used to augment
the dataset for classification tasks. To evaluate generated images, no quantitative analysis
is reported in the paper. While authors discussed that the generated synthetic images aid in
data augmentation and improve the classification performance of CNN by 4.6% precision
value.

The hierarchy of layers of the generator and discriminator models. To interpret this
idea, Qin et al. (2020) proposed an extension to the StyleGAN as skin-lesion StyleGAN
(SL-StyleGAN) for synthesizing skin lesion images. In Qin et al. (2020), the authors dis-
cussed that changing the number of fully-connected layers in a mapping network of the
generator can control the generation of different modes of images. In baseline Style-GAN
(Karras et al. 2019), a generator consists of a non-linear mapping network that maps latent
input z to an intermediate latent space W using MLP network and then passes the W infor-
mation to the original generator model. Furthermore, the authors attempted 2, 4, and 6
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Fig. 15 Patch discriminator of CycleGAN. The figure is redesigned from Modanwal et al. (2021)

fully-connected layers and evaluated the generated images with a recall score. They inves-
tigated that the generator with 2 fully-connected layers can generate relatively more diverse
images than 6 but results in scattered defects like artifacts, etc. The generator model with
4 fully-connected layers can generate relatively good diverse images with no artifacts. The
final SL-StyleGAN architecture with a generator of 4 fully-connected layers achieved a
0.263 recall score which is higher than alternate fully-connected layer combinations. The
authors concluded that the final synthetic images are not fully diverse as indicated by the
lower recall score which needs more work in the future to address this problem.

5.4.2.2 Discriminator An alternative discriminator introduced in the proposed architecture
of GAN is known as the modified discriminator. In GANs, when the generator collapses to
a single mode and produces identical image samples then the discriminator backpropagates
identical gradients for several generator updates. There is no coordination between the dis-
criminator and its gradients because it deals with each training sample independently. So, no
mechanism guides the generator to produce diverse image samples. To address this problem
in MR to MR image translation of breast slices, Modanwal et al. (2021) use a small field of

f(x;) € R4 denote a vector of features of input x; produced from intermediate layer of discriminator.

Where i € {1,2'...'k}
M;(matrix) € REXC Where i € {1,2 .../ k}
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Fig. 16 The workflow of minibatch discrimination. The figure is redesigned from Salimans et al. (2016)

@ Springer



A survey on training challenges in generative adversarial... Page 250f62 19

view 34 X 34 instead of 70 X 70 in standard Patch discriminator as depicted in Fig. 15 in the
CycleGAN. The small field of view encourages the transformation learned by the genera-
tor to maintain the sharp and high-frequency details. This modification of the CycleGAN
preserves the structural information of breast and dense tissues during the training of GAN
to perform image translation tasks.

The generated images are evaluated by dice coefficient and compared with the stand-
ard CycleGAN. The standard CycleGAN has a mean value of 0.8913 and a standard
deviation of 0.0941 for GE to SE translation while the mean value of 0.9089 and a
standard deviation of 0.0471 for SE to GE translation. GE Healthcare and Siemens are
the two source scanners for image acquisition. Authors have achieved an improved mean
value of 0.9801 and a standard deviation of 0.0061 for GE to SE translation while a
mean value of 0.9813 and a standard deviation of 0.0049 for SE to GE translation on the
test data.

Cervical histopathology images contain fine-grained information that is difficult to learn
by GANSs and can cause the mode collapse problem. To address the mode collapse in syn-
thesizing cervical histopathology images, authors in Xue et al. (2019) utilize mini-batch
discrimination in the discriminator of CGAN to generate realistic diverse samples. The
Minibatch discrimination enables the coordination between gradients of discriminator and
training samples using mini-batches for training image samples as depicted in Fig. 16. In
this way, the generator is penalized if it collapses to a single mode and is regulated to pro-
duce diverse images (Salimans et al. 2016). However, synthetic images are not evaluated
by any metric to check the diversity or similarity measures with real images. The generated
synthetic images are then used to augment the dataset for classification tasks.

A similar problem of generating diverse synthetic image samples occurs in CGAN
when dealing with distinct CT scans of different body parts for a super-resolution task.
To address this problem, a conditional information vector w based modified discrimina-
tor is proposed in Kudo et al. (2019). The discriminator is composed of a 3-dimensional
fully convolutional neural network as shown in Fig. 17. The conditional vector w con-
tains information about input image data such as leg, head, abdomen, or chest. This
information is used by the discriminator to evaluate the generated slices of CT data and
encourages the generator to produce diverse image samples. The generated super-reso-
lution images are evaluated through SSIM and PSNR scores. The highest score of SSIM
(0.933) and PSNR (35.73) are achieved respectively as compared to the CGAN without
conditional vector w. The SSIM score shows a similarity measure and realistic nature of
generated images towards ground truth images.

Input Images

_ESA PA— -.O
Output

Convolution Layer Convolution Layer
4x4x4, Stride=2 4x4x4, Stride=1

Conditional
Information
Fig. 17 Conditional informational based three dimensional CNN discriminator of CGAN (Kudo et al.

2019). The figure is redesigned from Kudo et al. (2019)
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Fig. 18 The architecture of VAEGAN. The figure is redesigned from Kwon et al. (2019)

5.4.2.3 Generator-discriminator combined In this section, we describe the architecture of
GANSs where the generator and the discriminator are updated or modified. The generation of
diversified synthetic 3-dimensional (3D) Magnetic Resonance images is a challenging task.
This is due to the complexity of the structure of 3D image data. To address this limitation,
authors in Kwon et al. (2019) adopted an a-GAN with few modifications in the activation
functions, batch normalization, and loss function. The a-GAN is composed of a Variational
Auto-encoder (VAE) and a code discriminator network. The VAE is a generative model that
explicitly learns the likelihood distributions of training data rather than the other model’s
feedback as in GANSs to generate synthetic image samples (Kingma and Welling 2014). A
GAN combined with VAE can learn the likelihood distributions of images which results in
the generation of diversified synthetic images as shown in Fig. 18. In contrast, VAE gener-
ates blurry images. a-GAN utilizes the advantage of VAE in alleviating the mode collapse
problem in 3D MR image generation. The authors of Kwon et al. (2019) proposed an Auto-
encoding GAN and generated 3D MR images with different latent input z sizes like 100,
1000, and 2048. With a latent vector input of 1000, the proposed Auto-encoding GAN can
generate diverse image samples while it fails to escape mode collapse with too small (100)
or too large (2048) latent vector input sizes.

To evaluate the diversity of synthetic images, authors Kwon et al. (2019) calculated
average MMD x 10* and MS-SSIM scores. The results show that the proposed GAN can
perform better with a latent input value of 1000 with an average MMD x 10~* score of

1
1
1
1
1
I
2w : 64x64x64x1
“—1 RelU :
. —_— 1
3x3x3 | 1
1
RelU : 3x3x3
1
: |
1
1 || oaxcdxbax32 64x64x64x32 I
: /T\ RelU 1
64x64x64x1 ! U ;
1

Fig. 19 The deep convolutional refiner architecture of DCR-AEGAN. The figure is redesigned from Segato
et al. (2020)
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0.072 and MS-SSIM of 0.829. The MS-SSIM of real data is 0.846. MS-SSIM score of syn-
thetic 3D MR images shows a good similarity measure with the real data and can be a good
candidate for generating diverse images. However, there is a gap in generating more robust
and diverse images with smooth and artifact-free images.

To bridge this gap, authors in Segato et al. (2020) extend this work (Kwon et al. 2019)
by applying a refiner network based on ResNet blocks (Targ et al. 2016) to generate real-
istic 3D MR images. The ResNet uses skip connections with deep convolutions as shown
in Fig. 19 which controls the skipping of some training layers to smooth the shapes of
generated images and make them more realistic. However, this work delivers a low diver-
sity score evident from the MS-SSIM score of 0.9991 between generated images which
indicates the lowest diversity of synthetic images as compared to the real images. The
proposed deep convolutional refiner GAN (Segato et al. 2020) achieved a good score of
MMD as (0.2240 + 0.0008) x 10* as compared to the previous score of MMD as (0.5932 +
0.0004) x 10* which shows the realistic nature of generated images.

The mode collapse can occur in a GAN when biomedical images contain complex infor-
mation of salient features which are difficult to learn and model a relationship between
them. A similar type of limitation is addressed for Dermoscopic skin lesion images in a
progressive growing GAN (PGGAN) using a self-attention mechanism by authors in
Abdelhalim et al. (2021). They discussed that most image synthesis tasks in biomedical
imagery utilize PGGAN built with convolutional layers. While in convolutional layers,
the convolutional filters are dependent on local neighborhood information to process the
convolution operations. It is computationally inefficient for convolutional filters to capture
the long-range dependencies in images by relying only on convolutional layers. So, a self-
attention mechanism is adapted that enables the discriminator to preserve image features
with relevant activations to a particular task. It utilizes feature attention maps that help the
generator to produce synthetic images in which coordination should be observed between
fine details at every location and fine details in distant portions of the images as shown in
Fig. 20. Besides, the discriminator can judge the consistency of highly detailed features
in distant portions of the image. In this way, the generator becomes capable of generating
diverse image samples using a self-attention mechanism in PGGAN (SPGGAN).

Different feature level maps are used for evaluating the performance of the self-attention
mechanism in image synthesis of resolution 128 x 128 pixels. The (N — 1)-to-(N) stage in
SPGGAN and PGGAN is monitored which represents the 2¥~-to-2V level feature maps
where N = 7. As a result, SPGGAN performs better with 70.1% as compared to PGGAN

f(x) transpose

Attention maps

F

.
®SoftMax “ |
I | 7 I
‘ v(x)

\ | 1
Convolution \\ ®7 I— | I
feature maps (x) \\ —
\ h(x) \

8(x)

1x1 conv

1x1 conv
Self-attention feature maps (o)

Fig. 20 Self-attention mechanism. The figure is redesigned from Zhang et al. (2019)
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with 67.7% for the training set at N = 6. Similarly, SPGGAN performs better with 62.2%
as compared to PGGAN with 60.8% for the test set at N = 6. However, the real dataset has
feature maps of 78.2%. It shows that the proposed SPGGAN attains better diversity and
realistic image synthesis performance than PGGAN yet is distant from real images.

Saad et al. (2023) also utilized a self-attention mechanism in the multi-scale gradient
GAN (MSG-GAN) to generate diversified X-ray images. They integrated a self-attention
layer into each layer of the generator and discriminator models. The self-attention utilizes
attention feature maps to help the MSG-GAN to learn and focus on the diverse features of
X-ray images as shown in Fig. 20. The authors demonstrated an improvement in the diver-
sity of generated synthetic images using an improved FID score of 139.6.

5.4.3 Adversarial training

This section discusses the alterations made during the training of GANs such as making
buffer storage (Lau et al. 2018) or using perceptual image hash (Neff et al. 2017) to identify
and address the mode collapse problem.

5.4.3.1 Buffer storage scheme Generation or simulation of diverse scar tissues in the
myocardium of the left ventricle from a segmented healthy Late-gadolinium enhancement
(LGE) imaging scan using GANS is always a challenging task. Scar tissue is a fibrosis tissue
that appears when healthy tissue gets destroyed by some disease. Lau et al. (2018) proposed
a variant of GAN namely ScarGAN that is composed of a convolutional U-Net-based archi-
tecture (Ronneberger et al. 2015) both in the generator as well as in the discriminator. In
ScarGAN, an experience replay buffer scheme (Shrivastava et al. 2017) is used to prevent
the generator from producing similar shapes of scar tissue. In this scheme, half of the gener-
ated masks are stored in a buffer for an experience replay. From this buffer, the discriminator
uses half of the training batches randomly to check previously generated scar tissue samples
and prevent the generator from producing similar shapes of scar tissue.

The generated images from ScarGAN (Lau et al. 2018) are evaluated by experienced
physicians. These physicians are provided with 15 generated and 15 real images in a mixed
dataset. They classify them with an accuracy of 53% which reflects a good score for the
realism of generated images. However, the authors concluded that ScarGAN still generates
less diverse shapes of scar tissues i.e. similar shapes that require to be researched in the
future.

5.4.3.2 Perceptual image hashing Generating new segmentation masks and ground-
truth images separately from GANs is a time-consuming task. To generate new chest
X-ray images and segmentation masks, Neff et al. (2017) proposed a variant of DCGAN
that forces the generator to produce a segmentation mask together with ground truth

Input Images | Image Hash Generation 1

1
£ 1 ‘ 1
1 | Salient Feature Feature Quantization and 1
=\ e . B A ——> Image Hashes
I Extraction Compression
1
1

Fig.21 A flow methodology of image hash generation. The figure is redesigned from Du et al. (2020)
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Proposed Solutions for Mode
Collapse Problem in GANs
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Fig.22 Taxonomy of different proposed solutions for addressing the mode collapse problem of GANSs in
biomedical imagery analysis

images. During the adversarial training, the generator starts producing identical image-
segmentation pairs with few artifacts that lead to a mode collapse problem. To address
this problem, the authors use the perceptual image hash function to remove the identical
generated image-segmentation pair. Perceptual image hash functions calculate hash val-
ues of real and generated images based on specific image features as shown in Fig. 21.
These hash values are compared further to evaluate the difference between generated and
real images.

The generated image-segmentation pair is evaluated in data augmentation for the seg-
mentation task. The U-Net is trained on 30 real and 120 generated images. The lowest
Hausdorff distance of 7.2885 has been observed as compared to the results when U-Net
trained on only real images or only generated images. However, the authors concluded that
a mild form of mode collapse occurred which resulted in less diverse images.
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Fig.23 An application-based taxonomy of different approaches for addressing the mode collapse problem
of GANs in biomedical imagery analysis

5.4.4 Summary

In this section, technical papers are reviewed to address the mode collapse problem in
the biomedical imagery domain. The mode collapse problem can be alleviated by using
different methods such as regularization, modified architectures, and adversarial train-
ing. These methods are reviewed as solutions to the underlying problem in the domain
of biomedical imagery. A taxonomy is created based on these solutions as shown in
Fig. 22. In Fig. 22, each sub-category is further divided into different methods like regu-
larization has weight normalization, modified architectures are divided into the genera-
tor, discriminator, and generator-discriminator combined. Similarly, adversarial training
is further divided into possible solutions like buffer schemes and perceptual image hash.
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The application-based taxonomy is also created as shown in Fig. 23. This taxonomy 23
helps to analyze the effect of mode collapse for the specific type of biomedical images.

From the technical literature, it is reviewed that all of the papers have utilized tech-
nical approaches that partially alleviate the problem of mode collapse in biomedical
imagery. The Auto-encoding GAN (Kwon et al. 2019) provides relatively more diverse
synthetic images while addressing the problem in biomedical imagery. Table 2 provides
a comparative analysis of contributing papers to address the underlying training chal-
lenges in GANs for biomedical imagery.

Moreover, a detailed overview of each solution is also listed in Table 3 where each
solution is based on three categories such as preprocessing, modified GAN architec-
tures, and loss functions. Table 3 summarises how each solution addressed the mode
collapse problem in GANSs for the biomedical imagery domain.

6 The non-convergence problem
6.1 Definition

In GANsS, it is important that the training of the generator and the discriminator should
converge at a global point (Nash equilibrium). The training of GANSs is performed as
a minimax game to reach this Nash equilibrium. The discriminator and the generator
should be trained with the best training strategies to achieve better training. As the gen-
erator’s performance improves, it becomes increasingly difficult for the discriminator to
distinguish synthetic images from real images. When the generator is producing the best
plausible (realistic-looking) images, the discriminator will have a classification accu-
racy of 50%. Consequently, the discriminator has no meaningful feedback to update the
weights of the generator. This will affect the synthetic images produced by the genera-
tor. As a result, the training of GANs leads to a non-convergence problem (Arjovsky
and Bottou 2017).

Synthetic Images

Non-convergence
in GANs

Fig. 24 Identification of the non-convergence problem in GANs for X-ray image synthesis. The plane black
color synthetic images with no information show the imbalanced training of the GANs for X-ray image
synthesis. It shows a failure of the generator and discriminator models during the training of GANs for gen-
erating X-ray images
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6.2 Identification

The non-convergence problem has a direct effect on the generation of synthetic images.
The underlying problem is identified by analyzing the nature of synthetic images. The non-
convergence problem leads the generator to produce plane color images such as black or
white in the case of gray-scale images as indicated in Fig. 24.

6.3 Quantification

To evaluate the problem of non-convergence in GANS, evaluation metrics are proposed to
judge the quality of generated images. So, several evaluation metrics are proposed such as
peak signal-to-noise ratio (PSNR) (Borji 2019) and FID (Heusel et al. 2017) to quantify the
quality of generated images as discussed in Sect. 4.

6.4 Solutions to the problem
6.4.1 Nash equilibrium

This section discusses the possible solutions in terms of using optimization algorithms and
controlling the training iteration (k) to find a Nash equilibrium.

In vanilla GAN (Goodfellow et al. 2014), Goodfellow demonstrated that an equilibrium
can be achieved with an optimal discriminator during the training of GAN. However, this
is an ideal case, and in practice, GAN does not meet the condition. So, the author Goodfel-
low et al. (2014) proposed an algorithm to update the discriminator multiple times (k) per
generator’s training update to get the discriminator close to an ideal. In vanilla GAN, the
discriminator is updated only once (k = 1) per generator’s training update which was suit-
able for that specific experiment. Similarly, WGAN (Arjovsky et al. 2017) uses (k = 5) for
discriminator updates per generator’s training update for attaining an equilibrium state.

6.4.1.1 Updating algorithm It is a very critical and sensitive approach to control the train-
ing updates of the generator and discriminator models to reach a balanced state of training.
Biswas et al. (2019) proposed a uGAN with separate parameters (k) for the discriminator
and (r) for the generator to control the updates of the training iteration of both of these
models. The authors investigated that the similar number of updates for both models yields
balanced training and the generation of high-quality retinal synthetic images. It is also ana-
lyzed that k with large values can generate high-quality realistic images by keeping r = 1. In
contrast, noisy images are generated using larger values of r with k = 1.

The synthetic images are evaluated with an SSIM metric. The mean, maximum, and
mean-maximum values of SSIM are measured between synthetic and real images to check
the quality and similarity between images. A higher score of SSIM shows higher similarity
and high-quality measures. The mean SSIM score of 0.61, maximum SSIM score of 0.73,
and mean-maximum SSIM score of 0.81 are achieved.

6.4.1.2 Learning rate The idea of using learning rates to stabilize and balance the train-
ing of GANs is proposed by Heusel et al. (2017). The authors introduced a novel algo-
rithm namely the Two Time-scale Update Rule (TTUR) to achieve a local Nash equilibrium
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using distinct learning rates of the discriminator and the generator instead of using multiple
update algorithms. TTUR uses stochastic gradient learning g(6,w) of the discriminator’s
loss and h(0, w) of the generator’s loss. It defines the true gradients of g(0,w) = V L}, and
h(@,w) = V,L; with random variables M®” and M’ as shown in Eq. 21 reported from
Heusel et al. (2017). So, it uses stochastic learning b(n) and a(n) for updating the discrimina-
tor and generator steps respectively as defined in Eq. 22 reported from Heusel et al. (2017).
However, the choice of appropriate learning rates depends on the GAN architecture, type of
experiments, and nature of the datasets.

20,w) =g(0,w) +M™ and h(0,w) = h(0,w) + M? 1)

W1 =W, +bn)(g(0,,w,) + M), 0,,, =06, +an)(h(6,,w,) +M?) (22)

Abdelhalim et al. (2021) investigated the use of both TTUR (Heusel et al. 2017) and dis-
criminator updates in SPGGAN for skin lesion image synthesis. The authors updated the
discriminator five times for every single update of the generator’s training. The update
algorithm slows down the training process while TTUR tries to balance it to generate
noise-free images.

SPGGAN-TTUR (Abdelhalim et al. 2021) shows visually appealing results of gener-
ated images as compared to SPGGAN. The results are evaluated through a paired t-test
with 95% confidence (p-value < 0.05). Paired t-test gives the mean difference between
two sample observations. The p-value of the t-test (PVT) is calculated to check the per-
formance of SPGGAN-TTUR for generating synthetic train and test sets images. The PVT
of 68.1 + 0.8% for the training set while 60.8 + 1.5 for test sets are achieved which outper-
formed the SPGGAN. However, SPGGAN-TTUR (Abdelhalim et al. 2021) suffers from
artifacts in the generated image that need to be researched.

6.4.1.3 Hyperparameter optimization In GANSs, the choice of appropriate hyperparam-
eters to control the discriminator and the generator is a challenging task. To address this
problem, optimization techniques can be used to obtain adaptive losses for updating the
weights of the generator.

Goel et al. (2021) proposed an optimized GAN to generate synthetic chest CT images of
COVID-19 disease. The optimized GAN utilizes a CGAN with Whale Optimization Algo-
rithm (WOA) (Mirjalili and Lewis 2016) to optimize its hyperparameters. A flow of the
Whale optimization algorithm is shown in Fig. 25. In this algorithm, the hunting trick of

N

- Update the positi i W
Initialize Measure Measure |A| pofaseearci zo:nnltcn Uettis X*,'f number of
Whale —>| fitness of each =»{ for each search = o & better solution iterations
N according to |A| is found
population Agent Agent valie reached?

Return best
search agents

Fig.25 The flow diagram of the Whale optimization algorithm. The figure is redesigned from Goel et al.
(2021)
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humpback whales is adapted to optimize the prey’s location. This hunting trick determines
the generator’s best search agents with the given discriminator. To update the position of
search agents, the optimization of hyperparameters follows three rules; first, the leader
whale finds the prey’s position and encircles it. Similarly, the generator’s search agents
calculate the fitness function at each iteration to achieve the best position and then update
their positions. Second, the distance between the prey and the location of the generator’s
search agents is measured and then the generator’s search agents update their position
based on these measures. Third, it is the same as the first rule but it updates the position of
search agents based on the random search instead of the best search as in the first rule. The
Optimized GAN (Goel et al. 2021) improves the performance of the discriminator and can
generate adaptive losses to update weights of the generator to produce good quality diverse
images.

The performance of optimized GAN (Goel et al. 2021) is compared with the baseline
CGAN. The generated images are used with training images for classification tasks. So,
the F1-score and accuracy of 98.79% and 98.78% respectively are achieved with Optimized
GAN while 91.60% accuracy and 90.99% F1-score are achieved with the baseline CGAN.
It shows that Optimized GAN can perform better with accuracy and F1-score measures, as
well as in optimizing hyperparameters for a balanced GAN.

6.4.2 Summary

In this section, technical papers of GANs are reviewed to address the non-conver-
gence problem in the domain of biomedical imagery. Achieving a Nash equilibrium
during the training of GANS is a remedy to this non-convergence problem (Goodfel-
low 2016). Training GANSs at an equilibrium state is not an easy task. By keeping this
concept in mind, the reviewed papers are classified into three different categories as
shown in Fig. 26. First, updating algorithms (Biswas et al. 2019), second, learning rate
(Abdelhalim et al. 2021), and third hyperparameter optimization (Goel et al. 2021).
Another taxonomy is also proposed for application-based biomedical imagery as shown

Fig.26 Taxonomy of different Proposed Solutions of Non-convergence Problem in
proposed solutions for addressing GANs

the non-convergence problem
of GANs in biomedical imagery ‘
analysis [ Nash Equilibrium ]

Updating Algorithm:
uGAN
(Biswas et al. 2019)

Learning Rate:
SPGGAN-TTUR
(Abdelhalim
et al. 2021)

Hyperparameter
Optimization:
Optimized GAN
(Goel et al. 2021)
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Fig.27 An application-based Non-convergence Problem in Different Applications of
taxonomy of different approaches GANs

for addressing the non-con-
vergence problem of GANSs in ‘
biomedical imagery analysis [ Image Synthesis ]

Unconditional
Image Synthesis

CT Images:
H Optimized GAN
(Goel et al. 2021)

Dermoscopic
Images
SPGGAN-TTUR
(Abdelhalim
et al. 2021)

Retinal Images
— uGAN
(Biswas et al. 2019)

in Fig. 27. This is further classified into image modality types such as dermoscopic
(Abdelhalim et al. 2021), CT (Goel et al. 2021), and retinal images (Biswas et al. 2019).

The updating algorithm is reviewed for vanilla GAN (Goodfellow et al. 2014),
WGAN (Arjovsky et al. 2017), and then state-of-the-art uGAN (Biswas et al. 2019). The
updating algorithms in vanilla GAN (Goodfellow et al. 2014) and WGAN (Arjovsky
et al. 2017) are proposed for the general imagery domain while updating algorithm in
uGAN (Biswas et al. 2019) is proposed for the biomedical imagery domain. All of these
propose strategies to update discriminator time-steps per generator time-steps during
the training of GANs. They show that their proposed solutions work better in attaining
an equilibrium state while training the GANs.

Another idea of achieving equilibrium in training the GANSs is proposed by Heusel
et al. (2017). It also helps to achieve an equilibrium using adaptive learning rates for the
discriminator and the generator. This technique is used by Abdelhalim et al. (2021) to
address the non-convergence problem in the biomedical domain. The Hyperparameter
optimization approach is also helpful in reaching the Nash equilibrium. For this, Goel
et al. (2021) investigated the use of optimization algorithms such as the Whale optimi-
zation algorithm (WOA) (Mirjalili and Lewis 2016) for biomedical imagery.

To summarize this section, Table 2 shows a comparison of proposed techniques
adapted by the contributing papers based on the underlying problem. It is observed
that all of the technical papers belong to the image synthesis of CT, dermoscopic, and
retinal image modalities. Among all of the contributed solutions, the TTUR (Heusel
et al. 2017) scheme provides relatively good performance to address the non-conver-
gence problem in the biomedical imaging domain. High-quality realistic images can be
achieved using this approach in biomedical imagery.

Moreover, a detailed overview of existing solutions to address the non-convergence
problem in GANSs is also reported in Table 4 where the methodology of each solution
to the non-convergence problem in GANs is summarized for the domain of biomedical
imagery.
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Real Images Synthetic Images
. . !

Instability in GANs

Fig. 28 Identification of the instability problem in GANs for X-ray image synthesis. The noisy synthetic
X-ray images show unstable training of the GANs for X-ray images. The blurriness in the images is gener-
ated due to the vanishing gradient problem which is a basic reason for the unstable training of GANs

7 The instability problem
7.1 Definition

The training of the GANs can get unstable due to the vanishing gradient problem. The
vanishing gradient problem occurs when the discriminator becomes an optimal classifier
and produces smaller values of gradients (approaching zero) for back-propagation. These
gradients are unable to update the weights of the generator due to which the generator stops
producing new images and the overall training of the GANs becomes unstable (Goodfellow
2016).

7.2 Identification

The instability during the training of GANS is identified by the generation of blurry or low-
quality synthetic images as indicated in Fig. 28. Moreover, the underlying problem takes a
longer time to train GANs with unstopping behavior which results in generating poor-qual-
ity images. Another drawback of the instability problem is that it will lead the generator to
produce synthetic images with artifacts. These artifacts include noise or additional objects
that are not meant for generated.

7.3 Quantification

The instability problem of training GANs can be evaluated by the same metrics that are
used for mode collapse and non-convergence problems such as MS-SSIM (Odena et al.
2017), FID (Heusel et al. 2017), and PSNR (Borji 2019). The quality of generated images
can be evaluated in terms of similarity measures as discussed in Sect. 4. Furthermore, clas-
sification metrics such as recall and precision are also used to quantify the quality of syn-
thetic images.
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X
Identity

Input (x)

RelU

>

Residual learning: F(X) + X

Weight Layer

Fig.29 A flow of residual learning in CF-SAGAN. The figure is redesigned from He et al. (2016)

Classes

‘ 4x4x4
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l 16x16x4

Conv
16x16x4

256x256x4

32, 64,128

|

Conv: Convolution layer with feature maps

1

Conv
256x256x4

Fig.30 The architecture of multi-scale generator of ciGAN. The generator takes input at multi-level layers

with multiple image resolutions. This figure is redesigned from Wu et al. (2018a)

7.4 Solutions to the problem

In synthetic image generation using GANS, the stability of GANs is an important aspect
to consider. If the training of GANs becomes unstable, the network cannot generate high-
resolution realistic images. To alleviate this problem, the following possible solutions are
proposed for the domain of biomedical imagery.

7.4.1 Modified architecture

The architecture of GANs plays a key role to avoid the vanishing gradient problem.
The selection of the generator and the discriminator have a great impact on the training
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performance of GANs. To synthesize PET images from multi-sequence MR images, a
Refined CF-SAGAN is proposed (Wei et al. 2020). In the proposed architecture (Wei et al.
2020), the problem of vanishing gradient occurs when the long-skip connections are used
in the generator to recover the lost spatial information during the down-sampling opera-
tions. Then, short skip connections are used to handle this problem. This process is known
as the residual connections (He et al. 2016). The residual connection helps to mitigate the
problem of vanishing gradient by allowing an alternative shortcut track for the gradient
to flow through as shown in Fig. 29 the training of GANs. It also enhanced the feature
exchanges across layers. The generated synthetic PET images are evaluated with the PSNR
for image quality. The proposed Refined CF-SAGAN outperformed by 9.07% in PSNR (p
< 0.05).

The generation of high-dimensional synthetic images is a challenging task using GANs.
To address this problem in biomedical imaging, a modified architecture namely ciGAN is
proposed (Wu et al. 2018a). The ciGAN (Wu et al. 2018a) utilizes a multi-scale genera-
tor architecture as depicted in Fig. 30 to infill a segmented area in a target image of breast
Mammography. The proposed generator uses a cascaded refinement network that helps to
generate features at multiple scales before being concatenated. This process improves the
training stability at high resolutions. The generated synthetic images are used for data aug-
mentation in the cancer detection task using ResNet-50. Traditional augmentation tech-
niques like rotation, flipping, and rescaling are also used. The proposed ciGAN with tradi-
tional augmentation achieved an area under the curve (AUC) score of 0.896 while the real
dataset with no augmentation achieved a 0.882 AUC score.

7.4.2 Loss function

7.4.2.1 Adversarial In vanilla GANSs, a cross-entropy loss is introduced that is usually
described as an adversarial loss. This loss can cause a vanishing gradient problem. To
address this problem, WGAN loss is introduced to utilize as an adversarial loss. (Please
refer to Sect. 2.4.3 (WGAN) for more detail). A similar study was found in the task of recon-
structing low-dose PET images from full-dose PET images (Zhao et al. 2020b). Authors
Zhao et al. (2020b) use a 1-Wasserstein distance instead of cross-entropy in supervised
CycleGAN namely S-CycleGAN to improve the training stability of the proposed network.
To evaluate the quality of generated low-dose images, authors Zhao et al. (2020b) utilized a
learned perceptual image patch similarity (LPIPS) score. The lower value of the score shows
better image quality regarding the actual image patches. The S-CycleGAN achieved a 0.026
LPIPS score which is small compared to the actual low-dose PET images of 0.035. The
results show better performance of S-CycleGAN regarding training stability.

Saad et al. (2023) proposed a novel MSG-SAGAN with a relativistic hinge loss func-
tion. Relativism in the hinge loss helps the discriminator to improve its learning using
approximate predictions of the real images as half of the images are fake on average instead
of taking them all as real. This prior training information helps the discriminator to classify
and predict the real and fake images more accurately and stabilizes the training of MSG-
SAGAN. An improved FID score of 139.6 is achieved for X-ray image synthesis using the
proposed MSG-SAGAN.

7.4.2.2 Regularization This section elaborates on the use of regularization terms with
additional loss functions in GANS to stabilize the training of GANS.

@ Springer



19 Page 46 of 62 M. M. Saad et al.

Gradient penalization (GP) is used to force the discriminator for producing meaningful
gradients. For this, the discriminator D is enforced to be Lipschitz continuous (Gulrajani
et al. 2017). GP enables D to target the ||D||,;, to 1. The [|D]|,;, is defined as Lipschitz con-
tinuity as shown in Eq. (23) reproduced from Lee and Seok (2020).

D(x) - D(xy)

(23)
[ =,

In Eq. (23), ||DI|,;, denotes the left side of the equation. K is the real constant, known as
Lipschitz constant (Lee and Seok 2020), and implies within the range K > 0 where
Vx,,x, € RP. To address the training instability problem, GP is applied as a L;p using L2
norm. The L, is defined as [E;C[(”V)?D()AC)HZ - 1)2]. In this way, gradients that vary from

one are penalized.

The gradient penalty regularization term is investigated by Gulrajani et al. (2017) with
WGAN loss to improve the training stability of the network.

In the biomedical imaging domain, WGAN-GP loss is used as an additional loss in
many GANSs architectures for biomedical image analysis tasks such as synthesis of cervi-
cal histopathology images (Xue et al. 2019) and MR images (Segato et al. 2020; Kwon
et al. 2019) to improve the training stability of GANs. In multi-scale Gradient GAN (MSG-
GAN) (Deepak and Ameer 2020), a WGAN-GP loss is used to train the MSG-GAN and
improve the training stability (Table 5).

7.4.3 Summary

In this section, technical papers of GANs are reviewed to address the instability problem
in the domain of biomedical imagery. The problem of unstable training triggers due to the
vanishing gradient problem when the discriminator becomes optimal and sends no feed-
back to update the generator’s weights as shown in Fig. 2. So, to stabilize the training of
GAN:S, the generator should receive significant feedback in the form of gradients from the
discriminator to produce high-quality realistic images. Considering this aim, many work
solutions have been proposed in the domain of biomedical imaging. With this aim, the
technical papers are classified into two taxonomies. The first is based on solutions in terms
of modified architectures and loss functions as shown in Fig. 31. The second is based on
the applications with different image modalities as shown in Fig. 32.

With modified architecture, technical papers provide their solutions by changing the
generator either its layers such as Wei et al. (2020) or complete generator like Wu et al.
(2018a). Both of the solutions provide a stable conditioned training of proposed GANs
but found some artifacts generated in the output images. The loss function plays a key role
in addressing the vanishing gradient problem. The reason behind this phenomenon is that
the loss function backpropagated feedback in the form of gradients to update the genera-
tor weights. When the discriminator becomes optimal then its loss approaches zero which
can’t provide feedback to the generator. Technical papers are reviewed that provide solu-
tions in biomedical imagery. In the loss function Sect. 7.4.2, technical papers are further
classified into adversarial loss (Zhao et al. 2020b) and regularization loss (Xue et al. 2019;
Segato et al. 2020; Kwon et al. 2019). The WGAN loss is used as an adversarial loss in
Zhao et al. (2020b). The WGAN-GP loss is used as regularization loss in Xue et al. (2019),
Segato et al. (2020), Kwon et al. (2019), Deepak and Ameer (2020) to address the instabil-
ity problem in different application-based solutions.
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{ Proposed Solutions for Instability Problem in ‘

GANs
[ ‘ |
{ Modified [ Loss Function ]
Architecture
Adversarial:
Generator: S-CycleGAN
ciGAN H (Zhao et al. 2020b)
(Wu et al. 2018a) MSG-SAGAN
CF-SAGAN (Saad et al. 2023)
(Wei et al. 2020) ) .
Regularization:
Modified CGAN
(Xue et al. 2019)
AEGAN
(Kwon et al. 2019)
— DCR AE
Alpha GAN
(Segato et al. 2020)
MSG-GAN

(Deepak and
Ameer 2020)

Fig.31 Taxonomy of different proposed solutions for addressing the instability problem of GANs in bio-
medical imagery analysis

Instability Problem in Different Applications of
GANs

Image Image Synthesis Image
Segmentation Reconstruction
Conditional
Mammography Image Synthesis: PET Images
Images: CF-SAGAN S-CycleGAN
ciGAN (Wei et al. 2020) (Zhao et al. 2020b)

(Wu et al. 2018a)

Unconditional
Image Synthesis

MR Images:
MSG-GAN
(Deepak and
Ameer 2020)

X-ray Images:
MSG-SAGAN
(Saad et al. 2023)

Fig.32 An application-based taxonomy of different approaches for addressing the instability problem of
GANSs in biomedical imagery analysis
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Fig.33 MS-SSIM and FID scores analysis of DCGAN, AIIN-DCGAN, MSG-GAN, and MSG-SAGAN
models for COVID-19 chest X-ray images. A lower MS-SSIM score of synthetic images than real images
indicates a better diversity and quality of synthetic images as compared to real images. A lower FID score
indicates a better diversity and quality of synthetic images as compared to real images

Table 6 A comparison of GAN

GAN variant 1 t FIDJ MS-SSIM_Real MS-SSIM
variants for generating diversified vanan mage type v —ned -

and high-quality synthetic Syntheticy

biomedical images DCGAN Xray images 223 0.50 0.48
AIIN-DGAN  X-ray images 200  0.50 0.37
MSG-GAN X-ray images 160  0.50 0.46
MSG-SAGAN X-ray images 135  0.50 0.45

Lower values of MS-SSIM and FID indicate a more diversified gen-
eration of synthetic images

To address the instability problem in the biomedical imaging domain, Table 2 shows a
comparative analysis of different approaches provided in the literature. It is analyzed that
WGAN-GP loss (Gulrajani et al. 2017) can be a suitable candidate to address the training
instability problem in biomedical imagery as it works with various GANs architectures to
alleviate the problem. The generated images can be obtained from GANs with high-quality
and realistic nature.

Moreover, a detailed overview of existing solutions to address the instability problem
in GANS is reported in Table 4 where the methodology of each solution to the instability
problem in GANSs is summarized for the domain of biomedical imagery.

8 A comparative analysis of state-of-the-art GANs on COVID-19 chest
X-ray image dataset

In this section, state-of-the-art GAN architectures such as DCGAN (Neff et al. 2017;
Kora Venu and Ravula 2021), AIIN-DCGAN (Saad et al. 2022), MSG-GAN (Deepak and
Ameer 2020), and MSG-SAGAN (Saad et al. 2023) are re-implemented for the COVID-19
chest X-ray image dataset (Rahman et al. 2021). The same dataset of X-ray images is used
to perform all these experiments. The X-ray dataset is selected because it is a widely used
image modality to analyze the disease in human beings. X-ray provides a wide spectrum
of affected parts of the body. These images are widely used by radiologists and clinicians
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to inspect the targeted segments of the disease. GANs have been utilized to train on these
X-ray image datasets to generate synthetic images (Aggarwal et al. 2021).

Results are evaluated using two benchmark unified metrics such as MS-SSIM and FID.
The MS-SSIM and FID metrics are selected because these metrics provide a compact eval-
uation of GAN’s synthetic images as compared to real images. The MS-SSIM computes
salient features of images such as structure, brightness, and contrast to measure the diver-
sity of synthetic images. FID computes the distance based on Inception Version-3 between
real and synthetic images. Therefore, a combination of these two metrics provides a fair
and significant analysis of a GAN’s performance regarding the generation of desirable syn-
thetic images. Literature Odena et al. (2017), Miyato et al. (2018), Karnewar and Wang
(2020), Han et al. (2020) demonstrates that these two metrics have been widely adopted for
the evaluation of GANSs training challenges in the research community and are significant
as compared to the alternate evaluation metrics in the domain of natural and biomedical
imaging.

A Table 6 comparing the experimental results of DCGAN, AIIN-DCGAN, MSG-GAN,
and MSG-SAGAN for the X-ray image dataset using MS-SSIM and FID evaluation met-
rics is added. Moreover, a comparative analysis of these GAN architectures via bar graphs
of MS-SSIM and FID scores is also shown in Fig. 33. The bar graphs show the impact of
different solutions to the training challenges of GANs on the generation of synthetic X-ray
images using MS-SSIM and FID scores. The adaptive input-image normalization technique
has a significant impact on the MS-SSIM score because MS-SSIM considers the perpetual
features of images to measure the similarity score. Therefore, synthetic X-ray images gen-
erated by AIIN-DCGAN indicate a lower score of MS-SSIM than the alternate solutions.
However, a combined score of MS-SSIM and FID shows that MSG-SAGAN is the most
performant GAN architecture to generate diversified synthetic X-ray images. The MSG-
SAGAN has the advantages of self-attention and a multi-scale gradient learning scheme
that enable the generator and discriminator models to guide each other significantly while
focusing on learning the salient features of X-ray images.

9 Challenges and future research directions

The implementation effects such as computational cost, memory consumption, and pros
and cons of benchmark GANs architectures for alternate biomedical imaging modalities
have been discussed in Table 7. Table 7 provides a comprehensive overview of experimen-
tal effects that impact the re-implementation of these architectures for diverse biomedical
imaging modalities. This table will guide a reader to the best appropriate GAN architecture
for targeted biomedical images.

9.1 The mode collapse problem

In biomedical image analysis, the mode collapse problem is one of the severe problems
that occur during the training of GANs. The mode collapse problem has a direct impact
on the diversity of synthetic images generated by GANs. Synthetic images lack diversity
as compared to real images. Due to this problem, the generator in the GAN misses sali-
ent features of the image and repeats the same features in the generation of new synthetic
images. It is challenging for researchers to train a GAN completely to avoid the mode col-
lapse problem and its subsequent impact on the synthetic images. The underlying problem
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behaves differently for a number of GAN-based applications of biomedical image analysis.
For example, a mode collapse occurs when a GAN uses a segmented mask with ground
truth chest radiographs to generate segmented radiographs. Similarly, significant features
of cell images can be affected and missed during the GAN-based generation of synthetic
images. The mode collapse problem also occurs due to the complexity of 3-dimensional
brain MR images in the process of image synthesis. For instance, modifications in GANs
such as perceptual image hashing (Neff et al. 2017), the mixture of distributions in the gen-
erator (Wu et al. 2018b), and VAEGAN-based architectures (Segato et al. 2020) have been
used to alleviate the mode collapse problem. In biomedical imaging applications, GANs
can also cause feature hallucinations when generating new synthetic data (Laino et al.
2022). Hallucination in GANs refers to the generation of novel, unwanted artificial features
or missing significant features in synthetically generated images that can lead to the risk
of misdiagnosing diseases (Wolterink et al. 2021). The hallucinated features are generated
due to the problem of mode collapse in GANs. Hallucinated features are usually generated
in the synthetic images when performing the image-to-image translation task (Cohen et al.
2018). The solutions for alleviating mode collapse can also reduce the effects of hallucina-
tion in synthetic biomedical images.

In GANS, several techniques have been used to address the mode collapse problem in
biomedical image analysis. It is critical for a GAN to train the generator and the discrimi-
nator in such a manner that the generator can learn a complete distribution of features and
anatomical structure of biomedical images while the discriminator returns constructive
feedback to the generator. The modifications in the generator or discriminator architectures
or their loss functions can alleviate the mode collapse but do not solve the problem com-
pletely. Thus, there is a research gap to find a significant solution either based on architec-
ture or loss function that should be capable of addressing the mode collapse problem in
biomedical image analysis. The proposed solutions may consider the performance of gen-
erated images to analyze the effect of mode collapse. The analysis of generated images can
better direct researchers to propose an effective solution in this field. However, it is impor-
tant to address the mode collapse problem during the training of GANSs so that the GAN-
based applications can be utilized effectively in biomedical image analysis. Future research
directions include modified architectures based on state-of-the-art attention networks,
novel regularization techniques, capsule networks, and advanced normalization techniques
to address the mode collapse problem in biomedical image generation. Autoencoders are
also recognized as a significant technique to address the mode collapse problem in GANS.
However, autoencoders generate blurry images. Nevertheless, autoencoders with powerful
discriminators can improve the existing solutions in the biomedical imaging domain.

9.2 The non-convergence problem

In GANSs, the non-convergence is a major failure of the generator and the discriminator
models to reach an imbalanced state. When the training of GANs becomes imbalanced,
there is a direct impact on the performance of synthetic images generated by GANs. Syn-
thetic images can be generated blurry or with artifacts. It is very critical to train a GAN
in a way that both models train in a balanced state during the whole training time. One
solution is to reach a Nash equilibrium. It is very difficult to reach Nash equilibrium in
practice. The issue is that a GAN sticks to the saddle point where the objective function
gives minimal weight parameters for one model while the maximal weight parameters are
for the other model. However, a minimax game can be used to find a Nash equilibrium.
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In biomedical image analysis, researchers devise new methodologies to address the non-
convergence problem. For example, optimization algorithms such as Whale optimization,
improving learning rate, and novel updating algorithms for training the generator and the
discriminator have been used.

The non-convergence problem is a potential challenge faced by GANs during train-
ing. Updating algorithms proposed in vanilla GAN are limited to their initial experi-
ments. The updating algorithm of WGAN can work for a few applications to achieve a
Nash equilibrium. Similarly, TTUR and hyperparameter optimization techniques can also
work for limited architectures while lacking generalization ability. So, there is a need for
a compact and generalized solution to achieve the Nash equilibrium during the training of
GAN:Ss. Recently, non-convergence is a generic problem for GANs, and researchers use JS
divergence to find a balanced state during the training of GANS that is difficult to achieve
in practice. Different techniques have been proposed to cope with this problem, such as
f-divergence and improved Wasserstein loss functions that still need improvement. These
approaches can be used with different GANs architectures to address the underlying prob-
lem in biomedical image analysis. However, future research directions should focus on
advancing JS divergence to balance the training of GANs while considering different opti-
mization techniques such as stochastic gradient descent, Pareto-optimization, etc. Novel
game theories with divergences can also be explored based on existing schemes that will be
helpful for GANSs to address the non-convergence problem.

9.3 Instability problem

The training stability of GANs is important to achieve for any GAN-based application of
biomedical image analysis. The problem occurs due to the vanishing gradient problem.
Thus, there are solutions proposed to address the vanishing gradient problem such as mod-
ified architectures and modified loss functions. The loss function has a great impact on
stabilizing the training of GANS. In this survey article, WGAN-GP loss (Gulrajani et al.
2017) is analyzed in almost all of the reviewed technical papers. The WGAN-GP loss helps
in acquiring stable training of GANS in the technical solutions but there is no guarantee
or generalization criterion about its suitability and utility for other applications as well as
other imaging modalities. It is important to consider that if GANs can handle the train-
ing strategy to achieve the Nash equilibrium and try to reach the optimal discriminator
then a vanishing gradient problem gets triggered due to the optimality of the discriminator
as discussed in Sect. 7.1. It is also suspected that the stability of training depends on the
mode collapse and non-convergence problems as well but sometimes, it can be seen that
architecture is trained in stable conditions but has been affected by mode collapse. So, this
situation could be a question of the performance of GANs. Therefore, all of these technical
training challenges must be addressed in biomedical image analysis.

Future research directions should consider the above-mentioned constraints and propose
novel techniques to address the instability problem in the biomedical imaging domain.
There have been several approaches that are experimented with GANs to stabilize the train-
ing while addressing the vanishing gradient problem. There is a need for devising novel
regularization, normalization, and game theory techniques to be used in the GANs which
are unexplored previously. WGAN-GP is a widely used loss to cope with this problem in
the general imaging domain yet requires more work and modifications to reach the sta-
ble training of GANs. Hybrid multiple GAN-based architectures based on WGAN-GP
loss, attention mechanisms, novel regularization, and optimization techniques can also be
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explored to address the underlying problem. In recent times, alternate generative models
such as diffusion models have also become popular in the domain of biomedical imaging
(Ali et al. 2022). Diffusion models have their pros and cons in terms of training stabil-
ity, computational cost, diversity of synthetic images, and learning high-dimensional latent
spaces as compared to GANs. A detailed review of several applications of diffusion mod-
els has been conducted for biomedical images (Kazerouni et al. 2022). It is an important
research direction to investigate the solutions to the GANS training challenges for address-
ing the training challenges of diffusion models in biomedical image analysis.

9.4 Evaluation metrics

In GANSs, evaluation metrics play a key role in representing the performance of GANSs.
These metrics provide a quantification of the problems such as mode collapse, non-conver-
gence, and training instability during the training of GANSs. Although, evaluation metrics
like IS, FID, MS-SSIM, MMD, and PSNR have been used to evaluate the performance of
GANSs based on the generated images. Nevertheless, these metrics are application-depend-
ent and lack the capacity to visualize the occurrence of the challenges during the training
of GANS.

In relation to the training challenges of GANs, evaluation metrics are used to capture
the diversity and quality of the generated images. Generally, for the mode collapse prob-
lem, the diversity of images is quantified by the IS, MS-SSIM, and MMD metrics. While,
for the non-convergence and instability problems, PSNR and FID are used. IS and FID
metrics are frequently used to evaluate generated images via the quality of images. Both of
these metrics are pretrained on ImageNet (Deng et al. 2009) dataset. The ImageNet data-
set lacks the class of biomedical images thus IS and FID metrics are not recommended to
be used in the biomedical imaging domain. Similarly, MS-SSIM is a human perceptual
metric that only considers luminance and contrast estimations to measure the similarity of
image features between two images. PSNR is a widely used metric to measure the quality
of images but is limited to monochrome images. In biomedical image analysis, the per-
formance parameters vary based on the type of imagery domain as every domain-specific
image has different characteristics and features in it.

Several unified evaluation metrics such as MS-SSIM, IS, MMD, FID, and PSNR have
been utilized to evaluate the training performance of GANs based on the nature of applica-
tion tasks in different imaging domains. There are two evaluation methods used to measure
the performance of GANs. One method includes the direct comparison of the real image
dataset to the synthetic image dataset using distance-based evaluation metrics such as IS,
MMD, and FID. Another method is to measure the similarity and diversity of synthetic
images using some features-based evaluation metrics such as SSIM, MS-SSIM, and PSNR.
The score of the evaluation metric of the synthetic image dataset is compared with the
score of the similar evaluation metric of the real image dataset. However, the deep learning
community mostly relies on using two benchmark metrics such as MS-SSIM for feature-
based evaluation and FID for distance-based evaluation to measure the performance of
GANSs (Borji 2019).

In biomedical image analysis, researchers utilize traditional pixel-wise evaluation
metrics to quantify the performance of GANs. Most traditional metrics are suitable
for supervised learning tasks that require reference images. In the biomedical imagery
domain, the availability of reference images is limited due to privacy issues and inaccu-
rate manual annotation. This ensures the use of unsupervised learning in the biomedical
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imagery domain. Furthermore, it is also important to evaluate the training performance
of GANs because of the randomization of initialization, optimization, and technical
challenges. The evaluation of generated images as compared to real images remains
challenging and needs to be explored. There has been a list of metrics reported in Borji
(2019) to evaluate the performance of GANs. Despite all these proposed metrics, there
is still a research gap in finding a metric that can capture salient features such as the
texture and shape of objects in biomedical images. It is important to analyze the symp-
toms of each training problem of GANSs for several applications in biomedical image
analysis. An evaluation metric that can capture the pre and post-training dynamics of a
GAN model is important to investigate. The proposed metric should work with most of
the image modalities such as X-rays, MR images, Dermoscopic images, Ultrasound, and
PET images to measure the efficacy of GANs in the domain of biomedical imaging.

10 Conclusion

In this survey article, training challenges of GANs such as mode collapse, non-con-
vergence, and instability have been reviewed in detail for the domain of biomedical
imagery. The three challenges are discussed via definitions, identifications, quantifica-
tions, and possible solutions. To address these training challenges in the biomedical
imagery domain, technical literature has been discussed based on applications and solu-
tions taxonomies. Existing literature shows that addressing these challenges entirely is
a challenging task, but few techniques have been proposed that can partially alleviate
these training challenges. In the architecture of GANs, the mode collapse problem can
be addressed by using minibatch discrimination, skip connections, VAEGAN as part of
the generator and discriminator, varying layers of generator and discriminator, spectral
normalization, perceptual image hashing, Gaussian mixture model as a generator, dis-
criminator with conditional information vector, self-attention mechanism, and adaptive
input-image normalization. The non-convergence problem can be addressed by using
modified training updates of the generator and discriminator, the Whale optimization
algorithm, and two time-scale update rules. The instability problem can be addressed
by using the Wasserstein loss, residual connections, multi-scale generator, and Rela-
tivistic hinge loss. Each solution contributes to alleviating the mode collapse problem
based on the type of GAN architecture. The effectiveness and suitability of the solutions
also depend on the types of GAN architecture and biomedical imagery. Moreover, this
survey also elaborated that how each training problem can affect the quality of gener-
ated biomedical images in terms of realistic nature, diversity, resolution, and artifacts.
This survey also highlights possible future research directions to address the underlying
training challenges of GANs for biomedical images. In this survey, it is concluded that
all three technical challenges faced during the training of GANs need more research
work to bridge this gap for biomedical image analysis. This motivates the researchers
to propose advanced solutions to address the underlying training challenges of GANs in
the domain of biomedical imagery.
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