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A B S T R A C T

The electrification of transportation through the widespread adoption of electric vehicles (EVs) has raised
substantial concerns within the realm of power grid operations. This concern predominantly stems from the
elevated electricity demand brought about by the surging population of EVs, consequently exerting strain on the
power grid infrastructure which can be reduced with vehicle-to-grid (V2G) technology integration. To address
this issue, this paper delves further into the realm of grid integration by introducing a Virtual Power Plant (VPP)
concept to enhance the synergy between EVs and power grid. This study aims to compare different realistic
objectives, ranging from total active power loss and voltage drop minimization to EV profit maximization
and then optimize the balance between the distribution grid power quality and VPP profit through bi-level
modeling. The presented model is devised as mixed-integer quadratically constrained programming (MIQCP)
and incorporates Temporal Convolutional Network (TCN) based forecasting to handle the uncertain behavior
of the residential loads using historical data. The experiments are conducted in IEEE 33-Bus and real-world
240-Bus distribution networks. The results indicate that enabling bidirectional power flow between the grid
and VPP can yield significant profits for EV users while only marginally impacting the active power loss,
approximately around 5%. This validation underscores how V2G not only presents various advantages for
power system operators but also benefits EV users simultaneously.

1. Introduction

1.1. Motivation and background

The transportation sector is one of most significant contributor to
carbon emissions, accounting for around 37% of global emissions (IEA,
2022). In recent years, there has been increasing awareness of the
need to address climate change and reduce carbon emissions, leading
to a growing interest in electrified transportation. Electric vehicles
(EVs) offer a promising solution for reducing emissions and improving
energy efficiency, and advances in EV technologies have made them
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increasingly viable for an extensive variety of applications. Consumer
behavior and government incentives also fulfill a crucial function in
the adoption of electrified transportation (Wang et al., 2017; Dutta and
Hwang, 2021).

However, the broad acceptance of EVs also brings new challenges
for grid integration and the management of power systems. Uncoor-
dinated EV demand may result with significant peaks in electricity
consumption, which can stress the power network and lead to in-
creased costs and reduced reliability. Coordinated charging strategies
have emerged as effective means to minimize the negative impacts of
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Nomenclature

The sets and indices, parameters, and vari-
ables used throughout the study are stated
below.

Sets and Indices

ℎ Set of electric vehicles.
𝑖, 𝑗 Set of buses.
𝑡 Set of time periods.

Parameters

𝛥𝑇 Time granularity.
𝐴,𝐵, 𝐶 Binary parameter for objective selection.
𝐶𝐸𝐸𝑉

𝑖,ℎ Charging efficiency of EV ℎ connected to
bus 𝑖 [%].

𝐶𝑅𝐸𝑉
𝑖,ℎ Charging rate of EV ℎ connected to bus 𝑖

[kW].
𝐷𝑉 𝑃𝑃 Reference profit of the VPP.
𝐷𝐸𝐸𝑉

𝑖,ℎ Discharging efficiency of EV ℎ connected to
bus 𝑖 [%].

𝐷𝑅𝐸𝑉
𝑖,ℎ Discharging rate of EV ℎ connected to bus 𝑖

[kW].
𝐿𝑉 𝑃𝑃 ,𝑚𝑎𝑥 Maximum allowable profit of the VPP.
𝐿𝑉 𝑃𝑃 ,𝑚𝑖𝑛 Minimum allowable profit of the VPP.
𝑃𝐷𝑒𝑚𝑎𝑛𝑑
𝑖,𝑡 Active power demand of bus 𝑖 in period 𝑡

[pu].
𝑄𝐿𝑜𝑎𝑑

𝑖,𝑡 Reactive power load of bus 𝑖 in period 𝑡
[pu].

𝑅𝑖,𝑗 Resistance of branch (𝑖, 𝑗) [pu].
𝑆𝑀𝑎𝑥
𝑖,𝑗 Maximum branch capacity (𝑖, 𝑗) [pu].

𝑆𝑜𝐸𝐸𝑉 ,𝑑𝑒𝑠
𝑖,ℎ Desired SoE of EV ℎ [kWh].

𝑆𝑜𝐸𝐸𝑉 ,𝑖𝑛𝑖𝑡
𝑖,ℎ Initial SoE of EV ℎ [kWh].

𝑆𝑜𝐸𝐸𝑉 ,𝑚𝑎𝑥
𝑖,ℎ Maximum SoE of EV ℎ [kWh].

𝑆𝑜𝐸𝐸𝑉 ,𝑚𝑖𝑛
𝑖,ℎ Minimum SoE of EV ℎ [kWh].

𝑇 𝑎
𝑖,ℎ Arrival time of EV ℎ.

𝑇 𝑑
𝑖,ℎ Departure time of EV ℎ.

𝑉 𝑚𝑎𝑥
𝑖 Maximum voltage of bus 𝑖 [pu].

𝑉 𝑚𝑖𝑛
𝑖 Minimum voltage of bus 𝑖 [pu].

𝑋𝑖,𝑗 Reactance of branch (𝑖, 𝑗) [pu].

EVs. Furthermore, vehicle-to-grid (V2G) technology offers benefits to
address these challenges such as integrating EVs into the power grid
and providing valuable grid services, including frequency regulation,
energy storage, and load balancing (Sengor et al., 2020).

V2G technology enables EVs to engage with the power grid via ei-
ther discharging or charging their batteries based on the grid’s demand
for power as a form of a Virtual Power Plant (VPP). This approach
has the potential to contribute valuable utility services, like energy
storage, load balancing and frequency regulation (Sengor et al., 2020).
The use of V2G technology can help to address the challenges posed
by uncoordinated EV charging, which can lead to significant peaks
in electricity demand and stress on the power grid. By utilizing V2G
technology, EVs can function as mobile energy storage units, enabling
the power grid to better manage fluctuations in demand and supply.
Furthermore, V2G technology holds the promise of delivering financial
advantages to both EV owners and grid operators, by allowing users to
trade excess energy back to the grid and providing grid operators with
key grid operations (Anon, 2023b). However, there are still economic
and technical hurdles that must be addressed in order to fully realize

Decision Variables

𝛬 Lagrange function.
𝜆1, 𝜆2, 𝜆3, 𝜆4 Lagrange multipliers for the KKT condi-

tions.
𝑓 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 Active power flow of branch (𝑖, 𝑗) in period

𝑡 [pu].
𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 Reactive power flow of branch (𝑖, 𝑗) in

period 𝑡 [pu].
𝐼𝑉 𝑃𝑃 Total profit of the VPP.
𝐾𝑉 𝑃𝑃 Profit loss of the VPP.
𝑃𝐸𝑉 ,𝑐ℎ
𝑖,ℎ,𝑡 Charging power of EV ℎ in period 𝑡 [kW].

𝑃𝐸𝑉 ,𝑑𝑖𝑠
𝑖,ℎ,𝑡 Discharging power of EV ℎ in period 𝑡 [kW].

𝑃𝐿𝑜𝑠𝑠
𝑖,𝑗,𝑡 Active power losses of branch (𝑖, 𝑗) in period

𝑡 [pu].
𝑃 𝑔𝑒𝑛
𝑖,𝑡 Total active power transferred from the

substation bus 𝑖 in period 𝑡 [pu].
𝑃𝐿𝑜𝑎𝑑
𝑖,𝑡 Active power load of bus 𝑖 [pu].

𝑄𝐿𝑜𝑠𝑠
𝑖,𝑗,𝑡 Reactive power losses of branch (𝑖, 𝑗) in

period 𝑡 [pu].
𝑄𝑔𝑒𝑛

𝑖,𝑡 Total reactive power transferred from the
substation bus 𝑖 in period 𝑡 [pu].

𝑆𝑜𝐸𝐸𝑉
𝑖,ℎ,𝑡 SoE of EV ℎ in period 𝑡 [kWh].

𝑢𝑎𝑢𝑥1 , 𝑢𝑎𝑢𝑥2 , 𝑢𝑎𝑢𝑥3 , 𝑢𝑎𝑢𝑥4 Auxiliary binary variables for the big M
notation.

𝑉 𝐵𝑢𝑠
𝑖,𝑡 Voltage of bus 𝑖 in period 𝑡 [pu].

the potential of V2G technology, and further research is needed to
develop more sophisticated algorithms and protocols for managing V2G
systems.

1.2. Literature review

In recent years, the integration of V2G technology into distribu-
tion systems (DSs) have attracted considerable interest in the research
community.

Mazumder and Debbarma (2021) investigated the use of the meta-
heuristic optimization technique known as the water cycle algorithm
(WCA) to minimize the peak-to-average ratio and charging prices, while
also maximizing the penetration level of EVs. This paper modeled EV
chargers as reactive power compensating devices to alleviate voltage
deviations, using IEEE 33-bus DS. However, the active times of EVs,
battery capacity and the charging/discharging efficiency were assumed
fixed. Mehta et al. (2019) introduced a multiyear hybrid planning
method applying a genetic algorithm (GA) with sample aging to mini-
mize the peak-to-average ratio and total daily cost in a power grid. The
optimization process consisted of the expenses related to infrastructure
upgrades and power losses, and satisfying the energy requirements of
EVs. The study created 100 scenarios annually to evaluate the perfor-
mance of the suggested algorithm. Haq et al. (2022) introduced a game
theoretic approach to minimize the alteration in injected power at each
node, with the objective of addressing congestion issues while preserv-
ing power equilibrium in the network. The paper focused on resolving
congestion in the system and maintaining stability while meeting the
power demand. Singh and Tiwari (2020) proposed a genetic algorithm
to optimize power dispatch with the aim of minimizing power losses in
the network while employing V2G operation. The paper also conducted
a cost-benefit assessment of the EV arranging scenarios and evaluated
the impact of grid reconfiguration on system operation and planning.
The paper considered the EVs’ state-of-charge (SoC), battery capacity,
(dis)charging efficiency and trip conditions in the optimization process.
Guo et al. (2020) suggested a mixed-integer quadratic programming
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(MIQP) to efficiently manage the charging and discharging considering
a network reconfiguration. The paper developed a model to quantify
the aggregated energy availability and charging demand from EVs in
traffic equilibrium, considering their travel plans and individual utility,
and connects the traffic pattern with the spatial–temporal distribu-
tion of electricity demand. The objective of the paper was to achieve
optimal coordination between EV charging/discharging and dynamic
distribution network reconfiguration. Mehrabi et al. (2020) suggested
a two-step mixed-integer nonlinear programming (MINLP) via greedy-
based algorithm to maximize the combined revenue of both the supply
and demand sides. Their optimization process considered practical
expenses for EV batteries, upkeep and workforce costs, as well as real-
time pricing. The paper included the amount of charging stations (CSs),
EV activity times, and the likelihood of V2G penetration. Huang (2019)
devised an interior point optimization approach using a sensitivity
method to minimize the cost associated with charging/discharging
and the battery degradation cost resulting from V2G operations, as
well as maximize local peak load shifting in a power system. During
the optimization process, the bulk of the nonlinear constraints was
converted into linear constraints and reduced the amount of equations.
The paper considered two strategies: cost-reduction strategy and peak-
shifting strategy. The study used a three-phase power flow model and
explicitly considered EV owner convenience. In Zhang et al. (2022), a
wind power curtailment strategy using EVs is proposed using particle
swarm optimization algorithm. This strategy aims to reduce wind cur-
tailment, improve wind power consumption rate, and minimize output
fluctuation and amplitude. In the model, EV aggregators set charging
tariffs, and a multi-objective optimization function is established to
integrate wind power curtailment consumption and minimize output
fluctuation. However, they did not integrated their system to DS by
modeling power flow constraints. Dhawale et al. (2024), a system
that integrates renewable power generation with conventional and
plug-in EVs to meet power demand is presented. It tests this system us-
ing chaotic arithmetic optimization algorithms to minimize generation
costs. The study contributes to scheduling power generation effec-
tively and minimizing operating costs in varied-unit systems addressing
security constraints and unit commitment issues. However, it only con-
sidered the relationship among the power generation and consumption.
No detailed modeling was taken into account. In Rajani and Kommula
(2022), a hybrid strategy for managing energy in EV charging station
(EVCS) and DS using Giza Pyramids Construction (GPC) and recalling-
enhanced recurrent neural network (RERNN) is presented. Their goal
was to maximize energy use, minimize system costs, and reduce voltage
deviation and power loss. The GPC approach is used to analyze energy
interaction, bidirectional trading, solar uncertainty, and cost analysis
based on selling energy. But they did not modeled DS explicitly. While
many studies have examined different aspects of V2G technology, the
aforementioned papers have not explicitly considered the AC optimal
power flow (OPF) constraints.

Velamuri et al. (2022) developed a model that uses the grasshopper
optimization (GO) algorithm to reduce power loss and peak-to-average
ratio in a distribution system. The optimization process involved three
modes, including the first in first out (FIFO) mode for grid-to-vehicle
(G2V) charging, a scheduled mode for smart G2V charging, and a
comparison of V2G modes. The paper’s objective was to assess the GO
algorithm’s efficiency across various operational modes. Kazemtarghi
et al. (2022) examined the current summation method that uses EVs
to improve the frequency stability of the DS. The research exam-
ined how bidirectional charging of EVs influenced frequency stability,
voltage profile and power quality, within the power network. The
paper introduced a comprehensive model of a real-world bidirectional
onboard charger designed to assess the frequency distortion in the
line current induced by EVs. The study takes into consideration di-
verse EV power levels, operational modes and voltage levels. Ahmed
et al. (2021) developed a coordination scheme based on distributed
controllers for managing the impact of EV power on the DS by using

quadratic programming with interior point method and the pattern
search algorithm (PSA). The scheme aimed to improve the voltage
profile within a grid, reduce the total power as well as the total charg-
ing costs and demand fluctuations, while considering unpredictable
arrivals/departures and the preferred charging time windows of EVs
with V2G technology. The study used actual residential loads recorded
in Australia and focused on minimizing fluctuations in power demand
and the overall energy expenditure. Zhang and Leung (2022) presented
a hierarchical system model to enhance V2G scheduling and power flow
for providing regulatory services. The paper first formulated the OPF
problem at the grid level by incorporating power flow routers within
the network. The model was transformed into a convex problem by
employing semidefinite programming relaxation, and the complexity of
the system network was further reduced using the tree decomposition
method. After addressing the grid-level problem, a scheduling problem
based on forecasts was developed at the EV level to coordinate EVs
in providing V2G regulatory services. An online scheduling problem
was then formulated to cope with forecast uncertainties. Decentralized
algorithms were developed to manage the schedules of EVs, making
it possible to address these issues easily scalable. The paper used a
fixed EV type and assumed there no household load. Kwon et al.
(2020) employed the mixed-integer linear programming (MILP) algo-
rithm; the aim was to minimize the overall cost resulting from energy
losses. This was achieved subject to the predictions of load demand
and traffic congestion for the following day. The research focused on
managing the energy costs of an EVCS and the optimization of the
energy distribution within the system to reduce costs. Deb et al. (2020)
proposed a novel strategy by using particle swarm optimization (PSO)
to achieve maximum penetration of EVs while minimizing the overall
cost in a photovoltaic (PV) powered grid system. The optimization
process included the forecasting of SoC of EV batteries using gradient
boosting regression trees. In the model, it was required that EVs should
be connected for at least four hours and their charging/discharging
power was assumed fixed and 2 kW. Nizami et al. (2021) analyzed
a multi-agent system architecture using mixed-integer programming
(MIP) to minimize the electricity expenditure for EV owners in DS. The
optimization process included an improved bidding model to facilitate
the interaction between EV owners and the electricity market. The
study focused on a low voltage grid in Australia, with real demand
and EV records. The paper aimed to assess the effectiveness of the sug-
gested multiagent system architecture and bidding model in practical
scenarios. Archana and Rajeev (2021) proposed a novel EV placement
index to determine the maximum threshold score for siting EVCS in
different buses in a DS. The objective of the paper was to find a
appropriate siting of EVCS in a DS while sustaining system performance
in terms of power quality, reliability and voltage stability. Birk Jones
et al. (2022), simulates 10 distribution feeders with predicted 2030 EV
adoption levels to understand the impact of time of use (TOU) pricing
on EV charging. It models multiple power systems to define power
profiles, voltages, and line loading. The study also explores the impacts
of TOUs on future integration scenarios and quantifies EV charging
impacts on different load types. This paper considered power flow using
OpenDSS, but did not modeled DS explicitly and demand response (DR)
is not considered. It was rather than a simulation than an optimiza-
tion. In Hasanien et al. (2023), introduces a novel Enhanced Coati
Optimization Algorithm (ECOA) for optimal solutions of probabilistic
OPF problems. The model uses metaheuristic optimization algorithm
incorporating EVs in power systems. The approach is tested on IEEE-
57 and IEEE-118 networks, demonstrating its effectiveness compared to
other metaheuristic-based methods. Real wind speed, solar irradiance,
and EV profiles are included in dynamic analyses. Nevertheless, the
paper did not consider the effect of the residential loads and EV user
preferences. Eid et al. (2022), optimizes DSs for renewable energy
sources like solar and wind units, with existing EVCS connected to
specific locations. Battery Energy Storage (BES) are provided at these
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units, aiming to control power flow and enhance performance by mini-
mizing fitness functions. The Gorilla Troop Optimizer (GTO) algorithm
is used to solve the optimization problem, minimizing power loss and
total voltage deviation. The GTO algorithm involves two stages: finding
ideal solar and wind power unit positions and sizes, and optimizing BES
operation after integrating EVCS. Yet, they did not aimed economical
effects, EV user preferences and residential loads. In Aghajan-Eshkevari
et al. (2023), a two-stage framework for optimizing EVs in the DS is
proposed. The first stage considers EV mobility in the transportation
system using the trip chain method and Dijkstra algorithm. The second
stage focuses on optimal active and reactive power exchange with
the distribution grid using a MILP model. The model considers both
EV owners’ and distribution network operator’s benefits and includes
the EV battery degradation cost. The framework is implemented on
a standard IEEE 33-bus system and 30-node transportation network.
However, the feasibility of the model was not tested with large-scale
DS and crowd EV penetration. In conclusion, while many studies have
examined various aspects of V2G technology, such as bidirectional
power flow, coordinated charging strategies, and the provision of grid
services, few have focused primarily on OPF models. Nonetheless,
these models are crucial for accurately representing the behavior of
the power system and determining the optimal dispatch of power to
meet demand while minimizing costs and satisfying various operational
constraints.

Despite the presence of numerous valuable studies in the literature,
only Velamuri et al. (2022) and Kwon et al. (2020) considered power
loss, but they did not focus on voltage and cost objectives. Although
(Kazemtarghi et al., 2022; Ahmed et al., 2021; Zhang and Leung, 2022)
and (Archana and Rajeev, 2021) analyzed voltage deviation, they did
not target power loss effects. Zhang et al. (2022), Aghajan-Eshkevari
et al. (2023) and Eid et al. (2022) modeled multi-objective approach,
yet they did not developed a comprehensive approach. Overall, no
comparative analysis has been conducted to evaluate the performance
of V2G-enabled models that focus on active power loss reduction,
voltage minimization, and EV user profit maximization, as well as
forecasting residential loads with large-scale EV penetration across
various distribution test systems. Moreover, the multi-objective models,
which consider both the grid’s power quality and user profit, did not
gain enough attention.

1.3. Contributions and organization

In this study, the development of a V2G-enabled distribution grid
that effectively addresses both grid constraints and EV user preferences
are proposed. To accomplish this, a bidirectional EV scheduling model
that optimizes multiple realistic objectives is proposed. Moreover, deep-
learning-based forecasting technique is integrated to accurately capture
the uncertain behavior of residential power to assist day-ahead load
scheduling. By adopting these approaches, this paper makes significant
contributions in developing a V2G-enabled distribution grid, introduc-
ing a comprehensive optimization model, leveraging load forecasting,
and demonstrating the practical applicability of the proposed solutions.
Furthermore, a key aspect of this research involves the concept of a
VPP. By treating V2G infrastructure as a VPP, this study effectively
harnesses the distributed energy resources within the EV fleet, enabling
them to act as controllable and dispatchable assets. The research not
only advances the field of energy optimization but also provides valu-
able insights for the sustainable integration of EVs into the power grid.
The contribution of this paper is threefold:

• A comprehensive Mixed-Integer Quadratically Constrained (MIQ-
CP) model is introduced to optimize the operation of V2G-enabled
EV parking lots (EVPLs). This model takes into account various
realistic objectives, such as active power losses, charging costs,
and voltage deviations. It considers both EV and distribution
system constraints, ensuring a holistic approach to grid optimiza-
tion. Furthermore, this paper offers a bi-level modeling approach,
balancing grid power quality and EV profit at the same time.

• The practical applicability of models is validated by conducting
extensive testing on a large-scale system with a high number of
EVs. By comparing the results under multiple scenarios, the scal-
ability and real-world implementation potential of our proposed
solutions are demonstrated. This empirical evidence strengthens
the credibility and effectiveness of our approach in practical
settings.

• A Temporal Convolutional Network (TCN) based forecasting is
employed for residential load analysis. This technique enables us
to capture the uncertain behavior of residential loads that are
connected to buses. By leveraging TCNs, the day-ahead schedul-
ing capabilities are enhanced, and more robust solutions are
provided.

The work is unique in that it not only compared multiple objectives,
but also forecasted residential load and tested it on various and large-
scale systems, providing valuable insights into the optimization of
EVPLs in a sustainable and efficient manner. The rest of the paper
is organized as follows: The mathematical model of the bidirectional
EV scheduling problem is given in Section 2. Case studies, simulations
and related results obtained from both forecasting and optimization are
examined in Section 3. Finally, the concluding remarks are evaluated
in Section 4.

2. Methodology

2.1. Mathematical model of the VPP

The first part of the proposed model seeks to optimize the objective
function by minimizing one of the following: the cumulative active
power losses across branches, average voltage drop at the nodes, or
EV-related costs, as specified in Eq. (1). Eq. (2) is the objective selector
where A, B and C are the binaries and it helps to select only one
objective during each model duration exclusively. Thus, the system
can be operated targeting a different objective function each time,
depending on different needs.

𝑚𝑖𝑛 𝐴 ⋅
∑

𝑖

∑

𝑗

∑

𝑡
𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑗,𝑡 + 𝐵 ⋅

∑

𝑖

∑

𝑡

|

|

𝑉0 − |

|

𝑉𝑖,𝑡||||

+𝐶 ⋅
∑

𝑖

∑

ℎ

∑

𝑡

(

𝑃𝐸𝑉 ,𝑐ℎ
𝑖,ℎ,𝑡 − 𝑃𝐸𝑉 ,𝑑𝑖𝑠

𝑖,ℎ,𝑡

)

⋅ 𝑃𝑟𝑖𝑐𝑒𝑡
(1)

𝐴 + 𝐵 + 𝐶 = 1 (2)

Eqs. (3) and (4) present the active and reactive power balance. The
sum of power generated from the substation bus and power passes
through the line must equal the total power demand in the node and
the power losses in the line. The power losses, which are contingent
on the power quantity transmitted through the line, can be calculated
with a simplified model of ‘‘𝐼2 ∗ 𝑅’’ loss in quadratic terms by using
(5) and (6), respectively.

𝑃 𝑔𝑒𝑛
𝑖,𝑡 +

∑

𝑗𝛺𝑗
𝑙

𝑓 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 −

∑

𝑗𝛺𝑖
𝑙

𝑓 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 = 𝑃 𝑙𝑜𝑠𝑠

𝑖,𝑗,𝑡 + 𝑃 𝑙𝑜𝑎𝑑
𝑖,𝑡 (3)

𝑄𝑔𝑒𝑛
𝑖,𝑡 +

∑

𝑗𝛺𝑗
𝑙

𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 −

∑

𝑗𝛺𝑖
𝑙

𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 = 𝑄𝑙𝑜𝑠𝑠

𝑖,𝑗,𝑡 +𝑄𝑙𝑜𝑎𝑑
𝑖,𝑡 (4)

𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑗,𝑡 = 𝑅𝑖,𝑗 ⋅

(𝑓 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 )2 + (𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 )2

𝑉 2
0

(5)

𝑄𝑙𝑜𝑠𝑠
𝑖,𝑗,𝑡 = 𝑋𝑖,𝑗 ⋅

(𝑓 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 )2 + (𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 )2

𝑉 2
0

(6)

− 𝑆𝑚𝑎𝑥
𝑖,𝑗 ≤ 𝑓 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 ≤ 𝑆𝑚𝑎𝑥
𝑖,𝑗 (7)

− 𝑆𝑚𝑎𝑥
𝑖,𝑗 ≤ 𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 ≤ 𝑆𝑚𝑎𝑥
𝑖,𝑗 (8)

The viable space for the active branch power and reactive branch
power is defined by (7) through (10), which consider the quadratic



Energy Reports 11 (2024) 3509–3520

3513

A.S. Türkoğlu et al.

terms to ensure that it does not exceed the transmission line’s capacity.
These constraints are essential to prevent overloading and secure the
dependable functioning of the DS. In addition to (7)–(8), (9)–(10)
defines the apparent power flow and considers the collective impact
of both active and reactive power. Eq. (11) establishes the lower
and upper thresholds of the voltage magnitude in the system while
(12) is used to determine the voltage difference between neighboring
buses which is derived from a comprehensive power system modeling
perspective. The square terms in the equation capture the non-linear
behavior of power losses, enhancing the precision of the voltage drop
estimation in the transmission line. Furthermore, (13) asserts that the
total load of bus i is equivalent to the demand of the bus plus the
aggregate charging power from EVPL at the associated bus.

−
√

2𝑆𝑚𝑎𝑥
𝑖,𝑗 ≤ 𝑓 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 + 𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 ≤

√

2𝑆𝑚𝑎𝑥
𝑖,𝑗 (9)

−
√

2𝑆𝑚𝑎𝑥
𝑖,𝑗 ≤ 𝑓 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 − 𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 ≤

√

2𝑆𝑚𝑎𝑥
𝑖,𝑗 (10)

𝑉 𝑚𝑖𝑛
𝑖 ≤ 𝑉 𝑏𝑢𝑠

𝑖,𝑡 ≤ 𝑉 𝑚𝑎𝑥
𝑖 (11)

𝑉 𝑏𝑢𝑠
𝑗,𝑡 = 𝑉 𝑏𝑢𝑠

𝑖,𝑡 −
𝑅𝑖,𝑗 ⋅ 𝑓 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 +𝑋𝑖,𝑗 ⋅ 𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡

𝑉0

+
(

𝑅2 +𝑋2) ⋅
(𝑓 𝑎𝑐𝑡𝑖𝑣𝑒

𝑖,𝑗,𝑡 )2 + (𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖,𝑗,𝑡 )2

2𝑉 3
0

(12)

𝑃 𝑙𝑜𝑎𝑑
𝑖,𝑡 = 𝑃 𝑑𝑒𝑚𝑎𝑛𝑑

𝑖,𝑡 +
∑

𝑖

∑

ℎ

∑

𝑡

(

𝑃𝐸𝑉 ,𝑐ℎ
𝑖,ℎ,𝑡 − 𝑃𝐸𝑉 ,𝑑𝑖𝑠

𝑖,ℎ,𝑡

)

(13)

Eq. (14)–Eq. (18) represents the mathematical representation of
the EV. Eq. (14)–Eq. (15) ensure that the charging and discharging
power do not surpass the power threshold of the corresponding EV.
Inequality (16) ensures that the EV charging procedure occurs safely
within a predetermined lower and upper state-of-energy (SoE) range.
Eq. (17) delineates the connection between the SoE and the charg-
ing/discharging rates of the EV throughout the parking duration. To
prevent the EV’s discomfort in terms of energy shortage, (18) denotes
the attainment of the targeted SoE value at the time of departure.
Eq. (19) specifies the initial SoE value of the EV upon arrival.

0 ≤ 𝑃𝐸𝑉 ,𝑑𝑖𝑠
𝑖,ℎ,𝑡 ≤ 𝐷𝑅𝐸𝑉 ,𝑑𝑖𝑠

𝑖,ℎ , ∀ 𝑖, ℎ, 𝑡 ∈
(

𝑇 𝑎
𝑖,ℎ, 𝑇

𝑑
𝑖,ℎ

]

(14)

0 ≤ 𝑃𝐸𝑉 ,𝑐ℎ
𝑖,ℎ,𝑡 ≤ 𝐶𝑅𝐸𝑉 ,𝑐ℎ

𝑖,ℎ , ∀ 𝑖, ℎ, 𝑡 ∈
(

𝑇 𝑎
𝑖,ℎ, 𝑇

𝑑
𝑖,ℎ

]

(15)

𝑆𝑜𝐸𝐸𝑉 ,𝑚𝑖𝑛
𝑖,ℎ ≤ 𝑆𝑜𝐸𝐸𝑉

𝑖,ℎ,𝑡 ≤ 𝑆𝑜𝐸𝐸𝑉 ,𝑚𝑎𝑥
𝑖,ℎ ,

∀ 𝑖, ℎ, 𝑡 ∈
[

𝑇 𝑎
𝑖,ℎ, 𝑇

𝑑
𝑖,ℎ

] (16)

𝑆𝑜𝐸𝐸𝑉
𝑖,ℎ,𝑡 = 𝑆𝑜𝐸𝐸𝑉

𝑖,ℎ,𝑡−1 + 𝑃𝐸𝑉 ,𝑐ℎ
𝑖,ℎ,𝑡 ⋅ 𝐶𝐸𝐸𝑉 ,𝑐ℎ

𝑖,ℎ ⋅ 𝛥𝑇

−
𝑃𝐸𝑉 ,𝑑𝑖𝑠
𝑖,ℎ,𝑡

𝐷𝐸𝐸𝑉 ,𝑑𝑖𝑠
𝑖,ℎ

⋅ 𝛥𝑇 , ∀ 𝑖, ℎ, 𝑡 ∈
(

𝑇 𝑎
𝑖,ℎ, 𝑇

𝑑
𝑖,ℎ

] (17)

𝑆𝑜𝐸𝐸𝑉
𝑖,ℎ,𝑡 = 𝑆𝑜𝐸𝐸𝑉 ,𝑑𝑒𝑠

𝑖,ℎ , ∀ 𝑖, ℎ 𝑖𝑓 𝑡 = 𝑇 𝑑
𝑖,ℎ (18)

𝑆𝑜𝐸𝐸𝑉
𝑖,ℎ,𝑡 = 𝑆𝑜𝐸𝐸𝑉 ,𝑖𝑛𝑖𝑡

𝑖,ℎ , ∀ 𝑖, ℎ 𝑖𝑓 𝑡 = 𝑇 𝑎
𝑖,ℎ (19)

2.2. The enhanced bi-level model for the VPP

In this section, the bi-level model for the VPP that captures the
balance between the distribution grid power quality and EVPL profit is
proposed. Within this framework, the objective function of the upper
level is minimizing the total active power loss whereas the lower model
tries to maximizes its profit. To accomplish this, the previous equations
were considered in the upper level, The first objective is determined as
upper-level objective and for the lower-level, the reverse of the third
objective is formulated in (20) since the goal is maximizing the EV
profit.

𝐼𝑉 𝑃𝑃 =
∑

𝑖

∑

ℎ

∑

𝑡

(

𝑃𝐸𝑉 ,𝑑𝑖𝑠
𝑖,ℎ,𝑡 − 𝑃𝐸𝑉 ,𝑐ℎ

𝑖,ℎ,𝑡

)

⋅ 𝑃𝑟𝑖𝑐𝑒𝑡 (20)

Additionally, the following constraints were created in the context
of the bi-level model:

This bi-level optimization problem, as described in Eqs. (21)–(24),
encompasses the costs and constraints for a VPP. Eq. (21) consists of
inequalities related to reference values, revenue, and loss constraints
for the VPP. The lower bound for revenue for the VPP is determined
by (23), while the upper bound is determined by (24). Eq. (22) defines
non-negative constraints for losses.

𝐷𝑉 𝑃𝑃 − 𝐼𝑉 𝑃𝑃 −𝐾𝑉 𝑃𝑃 ≤ 0 ∀𝜆1 (21)

−𝐾𝑉 𝑃𝑃 ≤ 0 ∀𝜆2 (22)

𝐿𝑉 𝑃𝑃 ,𝑚𝑖𝑛 − 𝐼𝑉 𝑃𝑃 ≤ 0 ∀𝜆3 (23)

𝐼𝑉 𝑃𝑃 − 𝐿𝑉 𝑃𝑃 ,𝑚𝑎𝑥 ≤ 0, ∀𝜆4 (24)

In a normal optimization problem, it is not possible to optimize two
objective functions at the same time. In this regard, to incorporate the
lower-level problem within the framework of the upper-level problem,
the lower-level problem has been transformed to Karush-Kuhn–Tucker
(KKT) optimality conditions. To achieve this, the Lagrange function
of the optimization problem presented in Eq. (25) was initially con-
structed to establish the KKT conditions. It should be noted that the
KKT conditions consist of stationarity, complementarity slackness, dual
feasibility, and primal feasibility conditions. The stationarity condi-
tions of the optimization problem are provided in Eqs. (26)–(27).
Additionally, the complementarity slackness conditions are specified in
Eqs. (28)–(31).

𝐾𝑉 𝑃𝑃 + 𝜆1(−𝐼𝑉 𝑃𝑃 +𝐷𝑉 𝑃𝑃 −𝐾𝑉 𝑃𝑃 )

+𝜆2 ⋅𝐾𝑉 𝑃𝑃 + 𝜆3 ⋅ (−𝐼𝑉 𝑃𝑃 + 𝐿𝑉 𝑃𝑃 ,𝑚𝑖𝑛)

+𝜆4 ⋅ (𝐼𝑉 𝑃𝑃 − 𝐿𝑉 𝑃𝑃 ,𝑚𝑎𝑥) = 𝛬

(25)

𝜕𝛬
𝜕𝐼𝑉 𝑃𝑃 = 0 → −𝜆1 − 𝜆3 + 𝜆4 = 0 (26)

𝜕𝛬
𝜕𝐾𝑉 𝑃𝑃 = 0 → 1 − 𝜆1 − 𝜆2 = 0 (27)

𝜆1 ⋅ (𝐷𝑉 𝑃𝑃 − 𝐼𝑉 𝑃𝑃 −𝐾𝑉 𝑃𝑃 ) = 0 (28)

𝜆2 ⋅ (𝐾𝑉 𝑃𝑃 ) = 0 (29)

𝜆3 ⋅ (𝐿𝑉 𝑃𝑃 ,min − 𝐼𝑉 𝑃𝑃 ) = 0 (30)

𝜆4 ⋅ (𝐼𝑉 𝑃𝑃 − 𝐿𝑉 𝑃𝑃 ,maks) = 0 (31)

The only way to linearize these equations is by using the big-M
formulation. The linearization procedures for the relevant expressions
using the M-formulation are provided in Eqs. (33)–(40). Additionally,
to satisfy the binary feasibility condition, the non-negativity of the
Lagrange multipliers is ensured as described in Eq. (32).

𝜆1, 𝜆2, 𝜆3, 𝜆4 ≥ 0 (32)

𝜆1 ≤ 𝑢aux
1 ⋅𝑁 (33)

𝐼𝑉 𝑃𝑃 −𝐷𝑉 𝑃𝑃 +𝐾𝑉 𝑃𝑃 ≤ (1 − 𝑢aux
1 ) ⋅𝑁 (34)

𝜆2 ≤ 𝑢aux
2 ⋅𝑁 (35)

𝐾𝑉 𝑃𝑃 ≤ (1 − 𝑢aux
2 ) ⋅𝑁 (36)

𝜆3 ≤ 𝑢aux
3 ⋅𝑁 (37)

𝐼𝑉 𝑃𝑃 − 𝐿𝑉 𝑃𝑃 ,𝑖 ≤ (1 − 𝑢aux
3 ) ⋅𝑁 (38)

𝜆4 ≤ 𝑢aux
4 ⋅𝑁 (39)

− 𝐼𝑉 𝑃𝑃 + 𝐿𝑉 𝑃𝑃 ,𝑎 ≤ (1 − 𝑢aux
4 ) ⋅𝑁 (40)
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Fig. 1. The flow chart of TCN forecasting.

Table 1
Configuration and hyperparameters.

Parameter Value

Input Shape 5 x 11
Filters 256
Kernel Size 2
Stacks 1
Dilations 1, 2, 4, 8, 16, 32
Return Sequences True
Activation ReLu

2.3. TCN based residential load forecasting

In this study, a methodology for forecasting residential load using
a TCN (Remy, 2020) is proposed. The TCN is a deep learning model
that has proven to be effective in capturing temporal dependencies in
time-series data.

The TCN model consists of multiple layers of convolutional and
dilated causal convolutional blocks, which allow the model to learn
long-term dependencies and patterns in the data. The input to the
model is a sequence of past minutely electricity consumptions, and the
output is the predicted values for the next sequence. The graphical
illustration of TCN model can be seen in Türkoğlu et al. (2024).

Table 1 lists the control hyperparameters and their corresponding
values for the TCN model.

3. Test and results

This paper first forecasts residential loads using TCN. Then, investi-
gates the impact of EVPL with V2G capability on the DS by employing a
MIQCP approach. The proposed model primarily focuses on conducting
a comparative analysis of various potential objectives for the distribu-
tion system operator. To evaluate the developed strategy, the GurobiPy
commercial solver is utilized. The optimization time frame is set to 24 h
with a resolution of 15 min.

3.1. Residential load forecasting

In this study, the Centre for Renewable Energy Systems Technology
(CREST) dataset of minutely electricity consumption from residential
buildings over a period of 3000 days, which was collected in its appli-
cation (Richardson et al., 2008) is used. The data is created to predict

Table 2
Score comparison of different forecasting models.

Metric TCN LSTM GRU

R2 0.932 0.876 0.802
RMSE 366 506 644

short-term time series of residential energy usage which estimates
power consumption at a minute resolution based on actual survey data
and a probability chain matrix. For this particular model, a three-
person family profile is adopted, and monthly data for May profile
is generated. In addition to given power demand, CREST residential
load generator is used to add realistic household consumption to the
predetermined bus.

The CREST dataset consists various type of household appliances
with their relevant usage data corresponds to time intervals. It is
capable of generating synthetic daily consumption data. 3000 different
profiles in order to train TCN model is collected. To prepare the CREST
data for modeling, The work first preprocessed it by applying Principal
Component Analysis (PCA) to reduce its dimension from 42 to 11. Then
the data was sliced into training and validation sets, using an 80/20
ratio. The training set was used to train the TCN model, while the
validation set was used to evaluate its performance. Fig. 1 demonstrates
the flow chart of the forecasting process that handling the uncertainty
related to loads in the study.

The performance of the TCN model using several metrics, root
mean squared error (RMSE) and including coefficient of determination
(R2) are evaluated. The findings demonstrated that the TCN model
has achieved R2 and RMSE score of 0.932 and 366 respectively. The
prediction graph and comparison of different forecast scores can be
seen in Fig. 2 and Table 2.

3.2. V2G enabled bidirectional power flow model in a form of VPP

To verify the optimization model, the IEEE 33-bus (Baran and Wu,
1989) and Midwest US 240-bus distribution test systems (Bu et al.,
2019) are employed. EVPLs are placed on Bus-17 for 33-bus system and
Bus-130, 150, 190, 230 for 240-bus system respectively. The topology
of the IEEE 33 and 240-bus DSs are shown in Fig. 3.

The base power and voltages are configured to be 1 MVA and 12.66
kV/13.8 kV respectively. Algorithm 1 presents the pseudo-code for
generating the total active power demands of the entire day from the
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Fig. 2. Forecast results of TCN model.

Fig. 3. IEEE Distribution Test Systems.

relevant IEEE test system documents. For the 240-bus DS, the smart
meter data provided by the distributed system operator is employed.

Algorithm 1 Active/Reactive Demand Generator
1: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2,…95 do
2: for 𝑎𝑐𝑡𝑜𝑟 = 1, 2,… , 𝐵𝑢𝑠 do
3: Create 𝑇 ’th the load value of the 𝑁 ’th nus ranging from 0.8

to
4: 1.0 of the original value.
5: end for
6: Merge the new load column with the corresponding Bus column
7: end for

Price fluctuations are taken from the Germany day-ahead prices
from NordPool (Anon, 2023a) and expanded to 15-minute time inter-
val. The 33 and 240-bus power demands and price data are illustrated
in Fig. 4.

Lastly, the data of most popular EVs in Europe, 2022 (Peñalver,
2023) was gathered to compile relevant EV dataset such as charge/dis-
charge power, battery capacity, etc. Most selling 50 EVs were selected

Fig. 4. Energy prices and bus loads.

Fig. 5. The arrival and departure times of the EVs.

to create an EVPL pool. For the 33-bus and 240-bus DSs, 150 and 750
EVs were randomly selected respectively from the aforementioned list.
Since the DS considers residential area, the suitable arrival/departure
schedules were generated. Seventy-five percent of the arrival times
are randomly distributed within the time frame of 4:30 PM and 7:00
PM. For the departure time, 6:00 AM was selected. The rest of the
EVs are regarded as secondary or supplementary automobiles, so they
are stationed during the day. Fig. 5 represents sample data from the
mentioned EV time intervals.

3.3. Simulation and results for the single level problem

To evaluate the model’s efficacy, multiple case studies were under-
taken, each of which is detailed below:

• Base Case: There are no EVPLs integrated into the DS.

G2V only cases:

• Case-1: Scheduling EVs to minimize total active power loss.
• Case-2: Scheduling EVs to minimize average voltage drop.
• Case-3: Scheduling EVs to maximize total EV profit.

V2G enabled cases:

• Case-4: Scheduling EVs to minimize total active power loss.
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Table 3
Comparison of the case studies for IEEE 33-Bus.
Case Total active power loss [kWh] Total voltage deviation [pu] Load factor [%] Total EV profit [Euro]

Base 3253.956 132.7189 91.51 –
1 3392.054 136.1798 91.90 −137.62
2 3392.492 136.1580 91.56 −135.32
3 3536.180 136.4818 66.93 −39.55
4 3310.501 134.1472 91.75 −58.23
5 3392.298 134.0961 90.01 −99.47
6 4717.019 140.0293 61.87 355.89

Table 4
Comparison of the case studies for Midwest 240-Bus.
Case Total active power loss [kWh] Total voltage deviation [pu] Load factor [%] Total EV profit [Euro]

Base 13 047.25 1088.297 73.64 –
1 13 768.55 1116.271 75.47 −612.94
2 13 790.66 1116.172 75.00 −654.09
3 13 849.99 1116.366 76.09 −339.72
4 13 361.53 1109.473 74.40 −506.48
5 13 566.55 1107.897 74.11 −445.70
6 14 973.66 1131.529 70.25 934.01

• Case-5: Scheduling EVs to minimize average voltage drop.
• Case-6: Scheduling EVs to maximize total EV profit.

The results of the aforementioned scenarios for both the IEEE 33
and 240-bus distribution test systems are illustrated in Tables 3 and 4
respectively. The results reveal that all case studies have higher total
active power loss compared to the base case because of the EV loads.

In Table 3, it is noticeable that V2G enabled distribution grid
relieves the whole system. When the Case-3 and Case-6 is compared
with each other, active power loss increases by 33% due to the arbi-
trage effects of the EVs. Considering the self-centered actions of EVs’,
the harmful effect on the network can be easily observed. Any case
that EV sell to energy the grid always results with a reduction in
their expenses. This indicates that EVs have a substantial influence on
line losses and voltage fluctuations. Notably, in Case-6, the findings
indicate the highest line losses and expenses, along with the lowest
load factor, along with achieving maximum total voltage deviation.
When the findings are evaluated based on the load factor, which is a
key metric for efficient power system asset utilization, the power loss
and voltage deviation cases achieve higher scores rather than the profit
cases. The power loss of the Case-4 is 3% lower than the Case 1 since
it involves distributed generation thanks to the EVPLs. While Case-3
and Case-6 minimizes the total charging cost, the adverse impacts of
EVPL on the grid escalate as line losses increase and the load factor
decreases. Nonetheless, the ramp up in the EV expense is trivial when
compared to the improvements in grid operation. In Table 4, the base
case has the lowest active loss and voltage deviation. In the Midwest
240-bus test system, the case results share similar results. However, it
is still clear that the Case-4 and Case-5 demonstrate around 10% better
performance in terms of active power loss. In both systems, there is no
doubt that V2G-enabled systems can show better efficiency. Also, the
EV users spend around 150 Euro less in V2G mode when it is compared
with G2V only mode even they are not aimed. Additionally, the Case-6
profits 1270 Euro more than Case-3. Therefore, the proposed models
can effectively show the economic benefits of EV charging with the
need for efficient power system operation.

Fig. 6 illustrates the allocation of aggregated active power losses
among the branches across the various cases for the test systems. The
results show that profit-oriented cases exhibit the highest losses in
comparison to the other cases during night and result with a nearly
3x and 2x loss in 33 and 240-Bus test systems respectively since EVs
prefer to charge for their own benefit. The Case-6 also peaks at noon
and valleys at evening differently in both systems. The power loss and
voltage deviation minimization cases follow similar trends. The findings
suggest that V2G-enabled cases provide the most value as they enable

Fig. 6. Variation of the total line losses with respect to time.

energy trading when the grid is insufficient if their charging behavior
is regulated by the grid operator.

In Fig. 7, the SoE variation of a sample EV parked in EVPL for
Case-6 is demonstrated. It is important to note that the EV reaches
the desired SoE level of its owner without violating user comfort.
However, it should also be clear that in this case, the EV owner only
charges or discharges the EV when the electric price is feasible, without
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Fig. 7. SoE variation of a sample EV.

considering the state of the grid. The EV begin to discharge during
evening and assists to the distribution grid until the 9:30 PM as a
distributed generator. When the electricity price is low after the 11:30
PM, it starts to charge. Since the minimum, desired and maximum
levels of the SoE can be predetermined by the user, this process ensure
that the batteries do not exceed the limits.

In Fig. 8, the aggregate power variation of the EVPLs is demon-
strated. For Case-4 and Case-5, the EV begins charging when the grid
state is feasible, whereas in Case-5, the EV continues discharging to
minimize voltage deviation around 6:00PM while Case-4 exhibits more
steady pattern. In Case-4 and 5, charging process of the EV appears
to be reached peak level in times when an additional distributed
generator is needed to stabilize either the power loss or voltage. It is
not surprisingly that the Case-4 and 6 follows the reverse pattern with
their power loss graphs since EVPL output has inverse effect with the
loss. Moreover their power charge–discharge process is same with the
electricity price graph in order to maximize their profit. This graphs
show that profit-oriented cases can result with an uncontrolled power
changes, which is not beneficial for the DS.

The total active power dissipated by the slack bus with respect to
time is depicted in Fig. 9. The base case has the smallest generation
since there is no additional load on the grid. The Case-1 and Case-2,
and Case-4 and Case-5 have same tendency in contrast to the Case-3
and Case-6. In Case-6, it is obvious that V2G reduces the slack bus
generation by 4x compared with Case-4 and 5 during evening. But
more steady changes are more beneficial like Case-4 and 5 for the DS
operator in order to maintain the inertia of the system. Furthermore
in the V2G-enabled cases, the slack bus in the 240-bus test system
generates 30% less power during midday. It is important that as the
EVPLs are placed away from the slack bar, the slack bar generation
decreases more since the losses caused by the power transmission is
curtailed.

Fig. 10 demonstrates the voltage deviation of the Bus-17 and Bus-
230 with respect to time respectively. Since one EVPLs are placed
at that buses, the change in the voltage is significant. In Case-6, the
EVPL uses all the benefits of the grid by respecting the minimum and
maximum voltage levels. When the price is higher at 7:00 PM, the EVs
discharge to the grid and the voltage level hits to 1.1 pu. However,
when the price decreases at 1:30 AM, the EVs draws from the grid
and the voltage level hits to bottom. The Case-3 shows the same trend,
but its voltage deviation is not that much since there is no V2G mode.
The all-other cases have relatively same attitude, even so Case 4 and 5
accomplish most stable voltage pattern. In base case, the voltage profile
is mostly higher since there is not additional EV load. Overall, it is
worth to mention that the upper and lower voltage levels are limited

Fig. 8. Aggregated power variation of the EVPLs.

by the model, and it can result with a much more fluctuation in the
real world operations.

The voltage levels of the buses at 12:00 AM for the IEEE 240-
Bus distribution test system is shown in Fig. 11. The time slot was
specifically chosen because the price signal was at its lowest level,
which is likely to encourage charging and increase an additional load
demand which nearly peaked even without the EV load. Therefore, this
time slot was considered the worst-case scenario. Although the all cases
have the same trend, the Case 6 exhibits a better voltage variation. The
Case 4 have always lower voltage level for all buses in the 240-bus
test system, which is not beneficial for the grid in terms of the voltage
profile. However, they can still accomplish both grid’s constraints and
users’ needs. In the 240-Bus test system, the voltage levels are more
evident where Base Case has the best profile, followed by power loss
and voltage deviation cases which increases system power quality.
Nevertheless, EVPL-focused cases loss their advantages and detorate the
grid profile.

3.4. Simulation and results for the bi-level problem

To demonstrate the efficacy of the bi-level model, different ref-
erence values were tried progressively based on 𝑃 𝑙𝑜𝑠𝑠 minimization
and 𝐼𝑉 𝑃𝑃 maximization cases. By examining the balance of 𝑃 𝑙𝑜𝑠𝑠 and
𝐼𝑉 𝑃𝑃 in the bi-level model according to the different reference values
(𝐷𝑉 𝑃𝑃 ), the knee point is obtained. The 𝑃 𝑙𝑜𝑠𝑠 and 𝐼𝑉 𝑃𝑃 balance and
knee point line obtained for IEEE 33-Bus distribution test system can
be observed in Fig. 12.
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Fig. 9. Slack bus active power variation.

As observed in Fig. 12, initially, significant changes in EVPL gain
can be achieved with very small changes in total active power loss in
the distribution network. To identify the turning point in this relation-
ship, a knee point analysis was conducted. A knee point is a term used
in statistics, particularly in data analysis methods like regression anal-
ysis. In this context, the knee point generally represents a point where
a straight or curve model transitions to a different curve. This point is
where the regression curve begins to deviate from providing a good
fit. In regression analysis, this point signifies when the relationship
between the dependent variable and the independent variable starts to
change, and the model becomes less suitable. According to the results
of the relevant bi-level model, a regression analysis was conducted to
establish the equation for the curve and subsequently calculate the knee
point. The equation that describes the relationship between total active
power loss and EVPL gain for the IEEE 33-Bus test system can be seen
in Eq. (41) respectively:

𝐼𝑉 𝑃𝑃 = −1.331 × 1014 ⋅

(

∑

𝑖,𝑗,𝑡
𝑃 𝑙𝑜𝑠𝑠
𝑖,𝑗,𝑡

)−9.7150

+ 1.5280 × 103 (41)

Upon examining the relationship between the equations above and
Fig. 12, it has been determined that the knee point is located at 3750
kWh of active power loss and 275 Euros of EVPL gain. Based on the
knee point, although the break-even point for the sub-level is 275
Euros, two new scenarios were investigated for values of 137.5 Euros
and 275 Euros in the upper level, considering the greater importance
of power quality in the distribution network.

Fig. 10. Voltage variation of the Bus-17 and Bus-230.

• Case-7: Bi-level model where reference profit, 𝐷𝑉 𝑃𝑃 , is 137.5
Euros

• Case-8: Bi-level model where reference profit, 𝐷𝑉 𝑃𝑃 , is 275 Euros

The results of the aforementioned scenarios for the IEEE 33-Bus
distribution test system are illustrated in Table 5. When examining
Table 5, it is evident that by making only 5% and 14% changes in
active power loss, an increase of 196 and 333 Euros in EVPL gain
can be achieved, respectively. In contrast, Case-6, results with 43%
more loss, but could provide an increase of 408 Euros. This underscores
the importance of correctly establishing the balance between the two
levels in the bi-level structure. This is because any additional cost
beyond the balanced profit of 275 Euros, as achieved in Case-8, results
in significantly higher active power loss in the distribution network.
Additionally, considering that grid power quality is more important
than EVPL gain, it can be foreseen that DSO may choose more balanced
profiles such as Case-7.

Fig. 13 represents the total active power loss and voltage deviation
for bi-level cases compared to Case-4 and Case-6, respectively. When
both Case-7 and Case-8 are examined, it can be seen that they show
significant improvements over Case-6, which focuses on EVPL profit
maximization. In this regard, while the knee point case may appear
relatively worse in terms of voltage, it can be said that it draws a
balanced profile, even though voltage deviation minimization is not
the primary goal in both levels. However, from the perspective of
enhancing grid quality while relatively preserving EVPL gain, Case-7
is considered to be more efficient.
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Table 5
Comparison of the bi-Level case studies for IEEE 33-Bus.
Case Total active power loss [kWh] Total voltage deviation [pu] Load factor [%] Total EV profit [Euro]

4 3310.501 134.1472 91.75 −58.23
6 4717.019 140.0293 61.87 355.89
7 3468.866 135.0582 80.18 137.5
8 3788.605 136.5747 72.04 275

Fig. 11. Voltage variation of the buses at 12:00 AM.

Fig. 12. 𝐼𝑉 𝑃𝑃 variation according to different 𝑃 𝑙𝑜𝑠𝑠 levels.

Fig. 13. Bi-Level model results.

4. Conclusion

As EVs become increasingly popular and the demand for sustainable
energy solutions grows, V2G technology is expected to play a crucial
role in future energy management. This paper presents a novel EV
charging model that considers both grid constraints and EV user pref-
erences, aiming to achieve various objectives from total active power
loss minimization to EV profit maximization. Simulations conducted on
IEEE 33 and 240-bus DSs demonstrate the effectiveness of the different
cases. Results indicate that V2G-enabled models can effectively balance
the grid, with Case-4 of the IEEE 33-bus system reducing active power
loss by 82 kWh and increasing user profit by 80 Euros compared to
Case-1. However, Case-6, despite yielding a 355 Euros user profit, re-
sults in unfavorable total active power loss and load factor for the grid.
In the IEEE 240-bus system, Cases 4 and 5 achieve better results, with
approximately 1500 kWh less active power loss and a 2% improvement
in voltage deviation. The study also reveals the significant impact of
the bi-level model on EV profit through slight adjustments in active
power loss. Moreover, it emphasizes the importance of considering the
load factor for efficient power system asset utilization. These findings
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offer insights for policymakers and industry professionals seeking to
develop sustainable and efficient EV charging solutions. Future research
can expand this methodology to larger DSs using smart meter data for
improved real-world application accuracy, enabling the identification
of system-specific characteristics.
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