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Umbilic Points on the Finite and Infinite Parts of Certain

Algebraic Surfaces

Brendan Guilfoyle∗ and Adriana Ortiz-Rodŕıguez†

Abstract

The global qualitative behaviour of fields of principal directions for the graph of a real valued
polynomial function f on the plane is studied. We determine and analyze the projective
extension of these fields and show that they are defined by an analytic quadratic form on
the whole unit 2-sphere. We prove that every umbilic point at infinity of this extension has
a Poincaré-Hopf index equal to 1/2, and the topological type of a Lemon when the degree of
f is 2 and the topological type of a Monstar for higher degrees. As a consequence we prove
a Poincaré-Hopf type formula for the graph of f such that, if all umbilics are isolated, the
sum of all indices of the principal directions at umbilic points depends only upon the number
of real linear factors of the homogeneous part of highest degree of f . A similar analysis is
carried out in the case of f being a homogeneous polynomial.

Keywords: umbilic points at infinity; real polynomials; fields of principal directions.

Mathematics Subject classification: 53C12, 53A05, 34K32, 53A20

1 Introduction

For any oriented smooth surface in real Euclidean 3-space, the eigenspaces of its second funda-
mental form define two orthogonal line fields, called fields of principal directions, whose singu-
larities are the umbilic points of the surface. The study of the fields of principal directions and
the principal lines of a smooth surface dates back to Euler, Darboux [5], Monge [17] and Cayley
[4], amongst others. For recent contributions, see [10] [11].

An umbilic is characterized by the fact that its principal curvatures are equal. Moreover, to
each isolated umbilic one can attach the index of either of the two fields. This index is of the

∗School of STEM, Munster Technological University, Kerry, Tralee, Co. Kerry, Ireland
e-mail: brendan.guilfoyle@mtu.ie
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form n/2, with n ∈ Z. When such a surface is generic, the behaviour of the principal lines in the
neighbourhood of an umbilic can only be one of three Darbouxian types: Lemon, Monstar and
Star [15] (see Fig. 1) with Poincaré-Hopf index 1

2 ,
1
2 ,−

1
2 , respectively. For topological reasons,

if all of the umbilics are isolated, the sum over all half-integer indices of the fields of principal
directions at its umbilic points equals the Euler characteristic of the surface.

D3 
− StarD1 − D2−Lemon Monstar

Fig. 1: Darbouxian points

The study of umbilic points at infinity of a surface has been developed from various perspec-
tives previously. In the case of smooth surfaces, V. Toponogov analyzes surfaces S homeomorphic
to a plane which are complete and convex [21]. In terms of the principal curvatures κ1, κ2 of S
he states the conjecture:

“On a complete convex surface S homeomorphic to a plane, the equality
infp∈S |k2(p)− k1(p)| = 0 holds”.

If there are no finite umbilic points, this can be taken to mean that there must be an umbilic
point at infinity. In the same paper, he proves the conjecture under some additional hypotheses.
We remark that after a straightforward calculation, this equality can be verified for any surface
that is given as the graph of a real polynomial.

Another instance of umbilic points at infinity in the smooth case is the study, carried out
by R. Garcia and J. Sotomayor in [7], on stable patterns of the nets of principal curvature lines
on surfaces embedded in Euclidean 3-space near their end points, at which the surfaces tend to
infinty. The research just cited is an extension of the work by the same authors [6] and devoted
to the analysis at infinity of the principal curvature nets of smooth algebraic surfaces in real
Euclidean 3-space. The surfaces discussed in [6] do not cover those studied in this paper as the
former consider surfaces having a smooth projective closure, while those studied in this paper
are singular at infinity.

In the particular case of a surface given by the graph of a homogeneous polynomial f ∈
R[x, y], the study of the index of the umbilic point that appears after the one-point compactifi-
cation of the surface with the point at infinity, was carried out by N. Ando in [1].

On the other hand, and in a broader context, there is the investigation of singular points,
their Poincaré-Hopf index and topological type, that arise at infinity as a result of the projective
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extension of a quadratic differential form on the plane. In [12] V. Gúıñez considered the set Fm

of positive quadratic forms

ω = a(x, y) dy2 + b(x, y) dxdy + c(x, y) dx2,

such that a, b, c ∈ R[x, y] are polynomials of degree at most m, the function b2 − 4ac is non-
negative at every point of the xy-plane, and (b2 − 4ac)−1(0) = a−1(0) ∩ b−1(0) ∩ c−1(0). For
a generic form ω ∈ Fm, he studied the projective extension of ω and proved, amongst other
things, that the topological behavior of these foliations in a neighborhood of a singular point at
infinity is a Monstar or a Star (Remark 2.9 of [12]).

In this paper, we study the global qualitative behaviour of fields of principal directions for
the graph of a degree n polynomial f ∈ R[x, y]. This study is carried out through the analysis of
the projective extension of the quadratic form PD that defines the fields of principal directions of
the surface, and the singular points that appear on it. It is worth emphasizing that even though
the quadratic form PD belongs to the set F3n−4, it is not a generic form of those analyzed in
[12] as the polynomial expression determining the singular points at infinity of the projective
extension of PD vanishes at every point on the equator of the unit sphere. Nevertheless, by
using Euler’s Lemma we obtain a non-degenerate form on the equator.

In what follows we begin by providing an analytic quadratic form Φ defined on the whole
sphere that describes the projective extension of the form PD. The two solution fields of this
form, Y1,Y2, being restricted to the upper or lower open hemispheres, are diffeomorphic to the
fields of principal directions, in Theorem 3.2. We then study the topological properties of the
isolated singular points on the equator of these solution fields. In Theorem 4.5, we prove that
every such singular point, called an umbilic point at infinity has a Poincaré-Hopf index equal to
1/2, and the topological type of a Lemon (Monstar) for n = 2 (n ≥ 3).

Regarding the number of umbilic points at infinity that can appear in the projective extension
of the form PD, in Theorem 4.6 we establish an upper bound. In Corollary 4.8 we analyze
the following two special cases. A homogeneous polynomial on R[x, y] is said to be elliptic
(hyperbolic) if its Hessian function has no real linear factors and it is non-negative (non-positive).
When fn, the highest degree homogeneous part of a polynomial f of degree n, is elliptic it is
proven that there are no umbilic points at infinity. If fn is hyperbolic, the number of umbilic
points at infinity is bounded by twice the number of real linear factors of fn.

The rest of this paper is organised as follows. After Preliminary remarks and a discussion of
projective extensions, in section 4.1 we prove results in the homogeneous case. In particular, in
Theorem 4.12 we prove that when f is a homogeneous polynomial any flat point on the equator
is an umbilic point at infinity.

One of the main results of this paper is Theorem 5.1, which provides a Poincaré-Hopf type
formula for the graph of f . This shows that the sum of the indices over all umbilic points only
depends upon the number of real linear factors of fn.
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In section 6 we display the global configurations of the fields Y1, Y2 for some specific cases.
We conclude the paper with the proof of Theorem 4.5 developed in section 7.

2 Preliminaries

This section provides some definitions and basic results that will be essential to the rest of the
article. In section 2.1, we define the differential form of principal directions PD of the graph of
a differentiable function f : R2 → R which will be used to determine the projective extension.
In section 2.2, we recall the fact that any smooth positive quadratic differential form defined on
an orientable smooth surface determines globally two direction fields. In section 2.3, we define
the projective Hessian curve of a polynomial f ∈ R[x, y] which will be used in Theorem 4.5.

2.1 Fields of Principal Directions

Given a smooth surface S in Euclidean 3-space the Gauss map N : S → S2 associates a unit
vector normal to a point p on S in a smooth way, as long as S is orientable. The eigenvalues
−k1,−k2 of the operator DN |p : TpS → TpS define the principal curvatures k1, k2 of the surface
at the point p. The points on S at which the principal curvatures coincide are called umbilic
points. For any non-umbilic point p on S the eigenspaces of DN |p, associated to −k1 and −k2
are two orthogonal directions on TpS called principal directions. These directions determine two
smooth direction fields which are mutually orthogonal. The maximal integral curves of the fields
of principal directions are called the principal curvature lines of the surface.

In order to understand the global behaviour of the principal curvature lines on the graph of
a differentiable function f : R2 → R, it is useful to consider the projection map π : R3 → R2,
(x, y, z) 7→ (x, y). The image under π of the fields of principal directions yields two fields of lines
that are described by the quadratic differential equation:

(Eq − eQ)dx2 + (Eg − eG)dxdy + (Qg − qG)dy2 = 0, (1)

where I(x, y) = E(x, y)dx2 + 2Q(x, y)dxdy +G(x, y)dy2,

II(x, y) = e(x, y)dx2 + 2q(x, y)dxdy + g(x, y)dy2

are, respectively the first and second fundamental forms of the surface. A point on the xy-plane
is the projection of an umbilic point on S if and only if the coefficients of the form given in
equation (1) vanish at such point.

After a direct simplification of the coefficients of equation (1), it becomes(
fxy + fxy(fx)

2 − fxfyfxx

)
dx2 +

(
fyy

(
1 + (fx)

2
)
− fxx

(
1 + (fy)

2
))

dxdy

+
(
fxfyfyy − fxy − fxy(fy)

2
)
dy2 = 0. (2)
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The differential form on the left side of equation (2) is called the form of principal directions
and will be denoted by PD. The two fields at which it vanishes will be denoted X1 and X2. For
the sake of simplicity, we identify the principal direction fields on the graph of f with the fields
X1 and X2.

In the particular case of a degree n polynomial f ∈ R[x, y], the coefficients of the form PD
are also polynomials in R[x, y] of degree at most 3n− 4.

2.2 Global Determination of a Direction Field

Let S be an oriented smooth surface embedded in Euclidean space and η be a quadratic dif-
ferential form defined on an open subset U ⊂ S. Let η(p) : TpS → R be the quadratic form
obtained by the restriction of η to TpS. We say that η is positive if for every point p ∈ U
the subset η(p)−1(0) of TpS is either the union of two transversal directions or all TpS. When
η(p)−1(0) = TpS we say that p is a singular point of η. Assume that p is not a singular point of
η and consider one of the two directions in η(p)−1(0) [14]. Choose an oriented circle C on TpS
whose center is the origin and denote by q an intersection point of C with the chosen direction
(see Fig. 2). Consider an oriented small arc C = (q1, q2) on C (according to the orientation of C)
that contains the point q. Denote the chosen direction by η1(p) if the form η(p) is positive along
the subarc (q1, q) and, negative on the subarc (q, q2). Otherwise, denote the chosen direction as
η2(p). In this way, the set of directions η1(p) obtained by varying p in U , determines a continous
direction field tangent to S.

(p)
1

η
η 0(p) <

pT S

η (p) 0>

q

C

Fig. 2: Determination of a direction field

2.3 Homogenization of the Hessian Function of f

The projection of the parabolic curve on the graph of a smooth function f : U ⊂ R2 → R under
the map π is the zero locus of the determinant of the Hessian matrix of f . This determinant,
|Hess f | = fxxfyy − f2

xy, will be referred to as the Hessian function of f and its zero locus will
be called the Hessian curve of f . The hyperbolic and elliptic domains are projected under π
into sets on which the Hessian function of f is negative and positive, respectively.
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When f is a polynomial of degree n in R[x, y], its Hessian curve is thus a real plane algebraic
curve of degree at most 2n− 4. Considering the homogeneous decomposition of f , f =

∑n
i=0 fi,

where fi ∈ R [x, y] is a homogeneous polynomial of degree i, we remark that

|Hess f | =
2n−4∑
j=0

hj , where hj is a homogeneous polynomial of degree j and h2n−4 = |Hess fn|.

Definition 2.1 The projective Hessian curve of f is the zero locus of the homogeneous poly-
nomial Hf ∈ R[x, y, z], the homogenization of the polynomial |Hess f(x, y)|.

It follows, from the homogeneous decomposition of f , that Hf has the expression: Hf (x, y, z) =∑2n−4
j=0 z2n−4 hj

(
x
z ,

y
z

)
. Thus, the restriction of Hf to the line at infinity z = 0 is

Hf (x, y, 0) = |Hess fn(x, y)|.

3 Projective Extension

In this section, f will denote a polynomial in R[x, y]. So, the coefficients of the form of principal
directions PD defined in the left-hand side of equation (2) are polynomials of degree at most
3n−4. Our goal is to study the fields of principal directions at infinity and we will do this through
the projective extension of the quadratic form PD. We start by developing the extension to
infinity of the form of principal directions PD. This extension will be called the projective
extension of PD and will be obtained through the so-called projection into the Poincaré sphere
[19].

Let S2 = {(u, v, w) ∈ R3 |u2+ v2+w2 = 1} be the unit sphere centred at the origin O in R3

and identify its tangent plane TNS2 at the north pole N = (0, 0, 1) with the xy-plane. Given a
point x = (x, y, 1) ∈ TNS2, the straight line through x and O intersects S2 at the following two
points (Fig. 3):

s1 (x) =
x√

1 + x2 + y2
, s2 (x) = − x√

1 + x2 + y2
.

The maps s1 : R2 → H+ and s2 : R2 → H− are called the projections of Poincaré where
H+ (H−) denotes the open northern hemisphere of S2 {(u, v, w) ∈ R3 |ω > 0} (open southern
hemisphere {(u, v, w) ∈ R3 |ω < 0}).

Remark 3.1 The image of each field of principal directions Xi, i ∈ {1, 2} under the projection
of Poincaré sj , j ∈ {1, 2} is a direction field diffeomorphic to Xi and is the zero loci of the
induced quadratic differential form s∗j (PD).

Theorem 3.2 The projective extension of the quadratic differential form PD is determined by
an analytic quadratic differential form Φ defined on the whole unit 2-sphere with the following
properties:
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S 1

S 2

x

(x)

(x)

Fig. 3: The projections of Poincaré

i) the two direction fields defined by Φ on the upper and lower open hemispheres are the zero
loci of the induced quadratic forms s∗1 (PD) and s2∗ (PD),

ii) away from the singular points of Φ, the equator is an integral curve of only one solution
field of Φ whenever the homogeneous part fn of f has no repeated real linear factors.

According to subsection 2.2, the analytic form Φ referred to in Theorem 3.2 defines globally
two direction fields on the unit 2-sphere.

Definition 3.3 The two direction fields defined by the form Φ will be denoted Y1, Y2.

Proof. Consider the map ϱ : R3\ {ω = 0} → R2, (u, v, ω) 7→ (x, y) where x = u
ω , y = v

ω . The
images of a pair of antipodal points on the sphere S2 under this map are the same. We shall
now obtain the pullback ϱ∗ (PD) of the form PD. We rewrite the form PD as

Ã(x, y)dx2 + B̃(x, y) dxdy + C̃(x, y)dy2 = 0, (3)

where Ã = fxy + fxy(fx)
2 − fxfyfxx, B̃ = fyy

(
1 + (fx)

2
)
− fxx

(
1 + (fy)

2
)
,

C̃ = fxfyfyy − fxy − fxy(fy)
2.

The replacement of(
dx dy

)
=
(
ωdu−udω

ω2
ωdv−vdω

ω2

)
= 1

ω2

(
du dv dω

) ω 0
0 ω
−u −v


in the quadratic form displayed in equation (3) leads us to that the pullback ϱ∗ (PD) is,

1

ω4

(
du dv dω

) ω 0
0 ω
−u −v

(Ã
(
u
ω ,

v
ω

)
B̃
2

(
u
ω ,

v
ω

)
B̃
2

(
u
ω ,

v
ω

)
C̃
(
u
ω ,

v
ω

))(ω 0 −u
0 ω −v

)du
dv
dω

 . (4)
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Expanding the product of the three interior matrices of expression (4), the pullback ϱ∗ (PD)
becomes

1

ω3n
(du dv dω)

 ω2A ω2 B
2

−ω
(
uA+vB

2

)
ω2 B

2
ω2C −ω

(
uB

2
+vC

)
−ω
(
uA+vB

2

)
−ω
(
uB

2
+vC

)
u2A+uvB+v2C

du
dv
dω

 ,

where A,B,C are polynomials in R[u, v, ω] such that

A(u, v, ω) = ω3n−4Ã
(u
ω
,
v

ω

)
, B(u, v, ω) = ω3n−4B̃

(u
ω
,
v

ω

)
, C(u, v, ω) = ω3n−4C̃

(u
ω
,
v

ω

)
,

and

A (u, v, ω) =
(
Fuv(Fu)

2 − FuuFuFv + ω2(n−1)Fuv

)
(u, v, ω),

B(u, v, ω) =
(
Fvv(Fu)

2 − Fuu(Fv)
2 + ω2(n−1)(Fvv − Fuu)

)
(u, v, ω),

C (u, v, ω) =
(
FvvFuFv − Fuv(Fv)

2 − ω2(n−1)Fuv

)
(u, v, ω),

F (u, v, ω) =
n∑

i=0

ωn−ifi(u, v), Fuu =
∂2F

∂u2
, Fuv =

∂2F

∂u∂v
, Fvv =

∂2F

∂v2
. (5)

It is worth noting that after multiplying by ω3n and evaluating the last expression at ω = 0

we get the differential form
(
u2A(u, v, 0) + uvB(u, v, 0) + v2C(u, v, 0)

)
dω2. From this formula

it can be seen that the equator is an integral solution of both fields away from the singular
points if the term u2A + uvB + v2C is not identically zero at ω = 0. In such a case the form
PD would be of the type of the positive quadratic forms studied in [12]. However, the opposite
happens since ω is a factor of u2A + uvB + v2C. To prove it, we will develop the polynomial
u2A(u, v, ω) + uvB(u, v, ω) + v2C(u, v, ω) by doing a recursive application of the well-known

Euler’s Lemma: Let f ∈ R[u, v] be a real homogeneous polynomial of degree n. Then,

nf(u, v) = ufu(u, v) + vfv(u, v). (6)

Consider the expressions showed in equation (5). For simplicity’s sake, in the next steps denote

Γ = ω2(n−1)
(
(u2 − v2)Fuv + uv(Fvv − Fuu)

)
.
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We thus obtain

u2A(u, v, ω) + uvB(u, v, ω) + v2C(u, v, ω) =

= −uFuuFv(uFu + vFv) + vFvvFu(uFu + vFv) + Fuv(uFu − vFv)(uFu + vFv) + Γ

= (uFu + vFv)
(
Fu(vFvv + uFuv)− Fv(uFuu + vFuv)

)
+ Γ

= nF

(
Fu

( n∑
i=2

ωn−i

[
v
∂2fi
∂v2

+ u
∂2fi
∂u∂v

])
− Fv

( n∑
i=2

ωn−i

[
u
∂2fi
∂u2

+ v
∂2fi
∂u∂v

]))
+ Γ.

By Euler’s Lemma,

v
∂2fi
∂v2

+ u
∂2fi
∂u∂v

= (i− 1)
∂fi
∂v

and u
∂2fi
∂u2

+ v
∂2fi
∂u∂v

= (i− 1)
∂fi
∂u

.

So, after a straightforward calculation, conclude that

u2A(u, v, ω) + uvB(u, v, ω) + v2C(u, v, ω) = ω T (u, v, ω), (7)

where T ∈ R[u, v, ω] has the expression

T (u, v, ω) = nfn

(
∂fn−1

∂u

∂fn
∂v

− ∂fn−1

∂v

∂fn
∂u

)∣∣∣∣
(u,v)

+ ω

(
nfn(u, v)R(u, v, ω) + ω−2Γ

+

( n−1∑
i=1

iωn−i−1fi(u, v)

)(
ωR(u, v, ω) +

(
∂fn−1

∂u

∂fn
∂v

− ∂fn−1

∂v

∂fn
∂u

)∣∣∣∣
(u,v)

))
. (8)

Similarly R ∈ R[u, v, ω] is the polynomial

R(u, v, ω) =

( n−2∑
i=1

ωn−i−2∂fi
∂u

)( n−1∑
i=2

(i− 1)ωn−i∂fi
∂v

)
+

∂fn
∂u

( n−2∑
i=2

(i− 1)ωn−i−2∂fi
∂v

)

+
∂fn−1

∂u

( n−1∑
i=2

(i− 1)ωn−i−1∂fi
∂v

)
−
( n−2∑

i=1

ωn−i−2∂fi
∂v

)( n−1∑
i=2

(i− 1)ωn−i∂fi
∂u

)

− ∂fn−1

∂v

( n−1∑
i=2

(i− 1)ωn−i−1∂fi
∂u

)
− ∂fn

∂v

( n−2∑
i=2

(i− 1)ωn−i−2∂fi
∂u

)

+ (n− 1)
∂fn
∂v

( n−2∑
i=1

ωn−i−2∂fi
∂u

)
− (n− 1)

∂fn
∂u

( n−2∑
i=1

ωn−i−2∂fi
∂v

)
. (9)

Equality (7) allows us to write the pullback ϱ∗ (PD) as

9



1

ω3n−1
(du dv dω)

 ωA ωB
2

−
(
uA+vB

2

)
ωB

2
ωC −

(
uB

2
+vC

)
−
(
uA+vB

2

)
−
(
uB

2
+vC

)
T

du
dv
dω

 .

After multiplying ϱ∗ (PD) by ω3n−1 we obtain the differential form

Φ :=
(
du dv dω

) ωA ωB
2 −

(
uA+ vB

2

)
ωB

2 ωC −
(
uB

2 + vC
)

−
(
uA+ vB

2

)
−
(
uB

2 + vC
)

T

du
dv
dω

 , (10)

that satisfies the first property. To prove the second part of the theorem we need the next result:

Lemma 3.4 The following identities hold(
uA(u, v, ω) +

vB(u, v, ω)

2

) ∣∣∣∣
ω=0

=
−nv

2(n− 1)
fn(u, v)

∣∣∣Hess fn(u, v)∣∣∣,(
uB(u, v, ω)

2
+ vC(u, v, ω)

) ∣∣∣∣
ω=0

=
nu

2(n− 1)
fn(u, v)

∣∣∣Hess fn(u, v)∣∣∣.
When restricting to ω = 0 the form Φ in equation (10) we obtain by Lemma 3.4 the form

Φ
∣∣
ω=0

:=
( nv

(n− 1)
fn

∣∣∣Hess fn∣∣∣)dudω −
( nu

(n− 1)
fn

∣∣∣Hess fn∣∣∣)dvdω + T (u, v, 0)dω2. (11)

Since dω = 0 satisfies the equation Φ
∣∣
ω=0

= 0, the equator is locally an integral curve of a
direction field determined by Φ.

Remark 3.5 If fn has no repeated real linear factors, then the Hessian polynomial |Hess fn| is
not identically zero.

This assertion follows from the classical result “a binary form G of degree n is the nth power
of a linear form if and only if its Hessian function vanishes identically” (Proposition 5.3 of [16],
Section 3.3.14 of [20]).

Remark 3.5 implies that the first two coefficients of the form Φ
∣∣
ω=0

of (11) are polynomials
other than the zero polynomial provided that fn has no repeated real linear factors. Thus,
under this assumption the equator is locally an integral curve of only one direction field. This
completes the proof of Theorem 3.2. □
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Proof of Lemma 3.4. In the following development the notation f̂ := fn is assumed. Thus,(
uA+ vB

2

)∣∣∣
ω=0

=
1

2

(
− f̂uuf̂v(uf̂u + vf̂v) + (f̂u)

2(vf̂vv + uf̂uv) + uf̂uv(f̂u)
2 − uf̂uuf̂uf̂v

)
.

By using Euler’s formula (6),

2

(
uA+ v

B

2

) ∣∣∣∣
ω=0

= −nf̂ f̂vf̂uu + (n− 1)f̂v(f̂u)
2 + f̂uvf̂u(nf̂ − vf̂v)− uf̂uuf̂uf̂v

= nf̂(f̂uf̂uv − f̂vf̂uu) + (n− 1)f̂v(f̂u)
2 − f̂uf̂v(vf̂uv + uf̂uu)

= nf̂

(
f̂uv

(
uf̂uu + vf̂uv

n− 1

)
− f̂uu

(
uf̂uv + vf̂vv

n− 1

))
+ (n− 1)f̂v(f̂u)

2 − f̂uf̂v((n− 1)f̂u)

=
n

n− 1
f̂
(
vf̂2

uv − vf̂uuf̂vv

)
.

Finally,

(
uA(u, v, ω) +

vB(u, v, ω)

2

) ∣∣∣∣
ω=0

=
−n

2(n− 1)
v
(
fn(u, v)

)∣∣∣Hess fn(u, v)∣∣∣.
A similar calculation proves the second identity. □

4 Umbilic Points at Infinity

The behaviour of the restriction to the equator of S2 of the fields Y1 and Y2 reflects the qualitative
description of the form PD at infinity; therefore it is relevant to study the singularities of these
fields on the equator.

Definition 4.1 A point on the sphere S2 is a flat point if all the coefficients of the differential
form Φ displayed in equation (10) vanish at that point.

We denote by (u, v)⊥ the vector (v,−u) in what follows. The proof of next Lemma follows
from equation (8) and Lemma 3.4.

Lemma 4.2 Let f ∈ R [x, y] be a polynomial of degree n ≥ 2 and p a point on the equator of
the sphere S2. Thus p is a flat point if and only if the homogeneous polynomial fn vanishes at
that point, or both polynomials, |Hess fn| and ∇fn−1 · (∇fn)

⊥, vanish at p. Moreover, when fn
has no repeated real linear factors, p cannot be a common zero of fn and |Hess fn|.

Definition 4.3 A point on the equator of the sphere S2 is an umbilic point at infinity if it is an
isolated flat point.

In the next example we exhibit a function such that its projectve extension has only flat
points which are not umbilic points at infinity.

11



Example 4.4 Consider the real polynomial f(x, y) = 2x− y+3(x+ y)2 − (x+ y)3. Denote the
homogeneous part of f of degree three by f3. By Remark 3.5 we have that |Hess f3| ≡ 0. On the
other hand, ∇fn−1 · (∇fn)

⊥ = (6(x+ y), 6(x+ y)) · (−3(x+ y), 3(x+ y)) ≡ 0, so every point on
the equator is a flat point. Since the flat points are not isolated, they are not umbilic points at
infinity.

The following result provides the Poincaré-Hopf index for an umbilic point at infinity and
its topological type.

Theorem 4.5 Let f ∈ R [x, y] be a polynomial of degree n and p an umbilic point at infinity.
If the polynomials ∇fn−1 · (∇fn)

⊥ and |Hess fn| have no common real linear factors, then

i) The Poincaré-Hopf index of Yk at p equals 1
2 ,

ii) p has the topological type of a Lemon if n = 2 and, generically the type of a Monstar for
n ≥ 3.

iii) Hf (p) < 0, where Hf is the homogenization of the Hessian function of f - see Definition
2.1.

The proof of Theorem 4.5 will be given in section 7.

n even n odd

Fig. 4: Antipodal umbilic points at infinity of Monstar type

In the next result, an upper bound for the number of umbilic points at infinity is given.

Theorem 4.6 Let f ∈ R [x, y] be a polynomial of degree n ≥ 2 and suppose that the L real linear
factors of fn are simple. If the polynomials ∇fn−1 · (∇fn)

⊥ and |Hess fn| have K common real
linear factors, then the maximal number of umbilic points at infinity is 2L+ 2K.

Proof. Note that the number of flat points on the equator is an upper bound for the number of
umbilic points at infinity. By Lemma 4.2, the number of flat points on the equator is twice the
sum of the number of real linear factors of fn plus the number of common real linear factors of
the polynomials ∇fn−1 · (∇fn)

⊥ and |Hess fn|. The second sum is finite because, according to
Remark 3.5, the polynomial

∣∣Hess fn∣∣ is not identically zero. □

12



Definition 4.7 A homogeneous polynomial on R[x, y] is called hyperbolic (resp. elliptic) if its
Hessian function has no real linear factors and if it is negative (resp. positive) away from the
origin.

A better bound is exhibited for some particular cases in the next result.

Corollary 4.8 Let f ∈ R [x, y] be a polynomial of degree n ≥ 2.

i) If fn is elliptic, then there are no umbilic points at infinity.

ii) If fn is hyperbolic, then the number of umbilic points at infinity is twice the number of real
linear factors of fn.

Proof. Note that when fn is elliptic or hyperbolic, its Hessian polynomial has no real linear
factors by definition. So, by Theorem 4.6 the only polynomial that contributes umbilic points to
infinity is fn. The first assertion follows from the fact that an elliptic homogeneous polynomial
has no real linear factors (Lemma 3.3 of [9]). □

4.1 Some Remarks About the Homogeneous Case.

Remark 4.9 When f is homogeneous, the polynomials R and T displayed in (9) and (8) re-

spectively, turn out to be R(u, v, ω) ≡ 0 and T (u, v, ω) = ω2n−3
(
(u2 − v2)fuv + uv(fvv − fuu)

)
.

Indeed, by developing inside the parenthesis of T we have

(u2 − v2)fuv + uv(fvv − fuu) = u(ufuv + vfvv)− v(ufuu + vfuv) = (n− 1)(ufv − vfu),

where the last equality is obtained by Euler’s Lemma. Thus, the analytic differential form Φ
cited in Theorem 3.2 becomes

Φ = (du dv dω)

(
ωA ωB

2
−(uA+vB

2
)

ωB
2

ωC −(uB
2
+vC)

−(uA+vB
2
) −(uB

2
+vC) (n−1)ω2n−3(ufv−vfu)

)du
dv
dω

 . (12)

Remark 4.10 The proof of Theorem 4.5 is valid also in the homogeneous case of degree n = 2
because it does not depend on the nullity of the coefficients bi (equation (21)). For the homoge-
neous case of degree n ≥ 3, the origin has the topological type of a Monstar according to Remark
10.1 and Lemma 9.1 of [13].

A better upper bound for the number of umbilic points at infinity is given in the following:

Theorem 4.11 When f is a homogeneous polynomial that has no repeated real linear factors
and that is neither elliptic nor hyperbolic, the number of umbilic points at infinity is at most
6n− 12 for n ≥ 5; 6 if n = 3 and 4 for n = 4.

13



Proof. If f has exactly n simple real linear factors, then it is a hyperbolic polynomial [8], whose
situation was analyzed in Corollary 4.8. Thus, the maximal number of umbilic points at infinity
occurs when f has exactly n − 2 real linear factors and its Hessian polynomial, 2n − 4. In the
particular case n = 4, the Hessian polynomial of any homogeneous quartic polynomial having
exactly two simple distinct real linear factors, has two real linear factors whose multiplicity is
at least one (see [18], p. 60). □

Unlike the general case, it is proven in the next theorem that any flat point on the equator
is an umbilic point at infinity when f is a homogeneous polynomial.

Theorem 4.12 Let f be a homogeneous polynomial with the property that it has no repeated
real linear factors and neither does its Hessian polynomial. Then, a point is an umbilic point at
infinity if and only if it is a flat point on the equator.

Proof. Let p be a point on the equator. After a rotation in the uv-plane, we can suppose
that p = (1, 0, 0). In a neighborhood of this point the fields Yk are described by the quadratic
differential equation

(
dv dω

)( ω C(1, v, ω) −
(
B
2 + vC

)
(1, v, ω)

−
(
B
2 + vC

)
(1, v, ω) (n− 1)ω2n−3

(
ufv − vfu

)
(1, v)

)(
dv
dω

)
= 0, (13)

whose discriminant, up to a nonzero constant, is

∆(v, ω) =
(
B(1, v, ω) + 2vC(1, v, ω)

)2
+ 4(n− 1)ω2n−2(vfu − fv)C(1, v, ω). (14)

Suppose that the origin in the vω-plane is a flat point of the differential form given in equation
(13). Replacing the expressions

B = fvv(fu)
2 − fuu(fv)

2 + ω2(n−1)(fvv − fuu) and C = fvvfufv − fuv(fv)
2 − ω2(n−1)fuv

in the discriminant of (14) we obtain

∆ =

(
α+ 2vfv

(
fvvfu − fuvfv

)
+ ω2n−2

(
fvv − fuu − 2vfuv

))2

+ 4(n− 1)ω2n−2
(
vfu − fv

)(
β − fuvω

2n−2
)
, (15)

where α and β are the following polynomials in one variable

α(v) = fvvf
2
u − fuuf

2
v , β(v) = fvvfufv − fuvf

2
v .

We remark that point p on the equator is a flat point of (12) if and only if the polynomials, f
or |Hess f |, vanish at p. Therefore, we consider two cases.

14



First case. Assume that f(1, 0) = 0. So, (B + 2vC) (p) = 0 and ∆(0, 0) = 0. It only remains
to prove that the origin is an isolated singular point. Because f(1, 0) = 0 and f has no repeated
real linear factors, it can be written as

f (u, v) = v

(
n−1∑
i=0

ai u
ivn−1−i

)
, with an−1 ̸= 0. (16)

On the one hand, the lowest degree term of ∆ containing only the variable ω is ω2n−2 whose
coefficient is given by the constant part of the single-variable polynomial 2α(fvv − fuu)− 4(n−
1)βfv. The constant part of 2α(fvv−fuu) is zero. Thus, the coefficient of the monomial ω2n−2 is
4(n−1)2a4n−1 which is positive according to equation (16). On the other hand, the lowest degree
term of ∆ containing only the variable v is the monomial n2(n − 1)2a4n−1v

2 which appears in

the expression
(
α+ 2vfv(fvvfu − fuvfv)

)2
and whose coefficient is also positive. In conclusion,

the discriminant ∆ displayed in equation (15) can be written as

∆(v, ω) = v2g1(v) + ω2n−2g2(v) + ω4n−4g3(v), (17)

where g1, g2, g3 ∈ R[v] are one-variable polynomials such that g1(0) > 0 and g2(0) > 0. These
properties and the parity of the powers appearing in equation (17) guarantee that the origin is
an isolated singularity.

Second case. Let us suppose that |Hess f |(1, 0) = 0. Since f has no repeated real linear factor,
its Hessian polynomial is not identically zero (Remark 3.5), and f does not vanish at p (Lemma
4.2). Thus, the polynomial f has the expression

f (u, v) =
n∑

i=0

ai u
ivn−i, with an ̸= 0 and an−2 =

(n− 1)a2n−1

2nan
. (18)

After a straightforward calculation, it can be verified that the coefficient of the monomial ω2n−2

is zero and the lowest degree term in the variable ω is the monomial ω4n−4 whose coefficient

is
(
n−1
nan

)2 (
a2n−1 − n2a2n

)2
+ 4
(
n − 1

)2
a2n−1 ̸= 0. The lowest degree term of ∆ including only

the variable v is the monomial
(
6n2an−3a

2
n − (n − 1)(n − 2)a3n−1

)2
v2. The coefficient of this

monomial is positive because the polynomial |Hess f | has no repeated real linear factors. We
conclude the proof by noting that the discriminant in this case has the form in equation (17)
with g2(0) = 0. □

5 Umbilic Points on the Finite Part

In this section we prove a relation between the umbilic indices of the graph of a real polynomial
f and the linear factors of the highest degree homogeneous part of f .
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Theorem 5.1 Let f ∈ R[x, y] be a polynomial of degree n ≥ 2 such that every umbilic point on
its graph is isolated. Suppose that fn has L real linear factors, and that the polynomials |Hess fn|
and ∇fn−1 · (∇fn)

⊥ have no common real linear factors. Then∑
p umbilic

Ind(p) = 1− 1
2L.

The following lemma will be used in the development of the proof.

Lemma 5.2 Let f ∈ R[x, y] be a polynomial of degree n ≥ 2 and suppose that the polynomials
|Hess fn| and ∇fn−1 · (∇fn)

⊥ have no common real linear factors. Then, every real linear factor
of fn is simple.

Proof. After a rotation of the xy-plane we can suppose that y is a real linear factor of fn. Thus,

fn (x, y) = y

(
n−1∑
i=0

ai x
iyn−1−i

)
. (19)

Assume now that y is a repeated linear factor of fn. Thus, an−1 = 0, which implies that

|Hess fn|(1, 0) = −
(
(n− 1) an−1

)2
= 0. So, y is a factor of the polynomial |Hess fn|. The fact

that y2 is a factor of fn leads to ∂fn
∂x

∣∣
y=0

= 0 and ∂fn
∂y

∣∣
y=0

= 0. Hence y is also a factor of the

polynomial ∇fn−1 · (∇fn)
⊥, which contradicts the hypothesis. Thus, y is a simple real linear

factor of fn. □

Proof of Theorem 5.1. By Lemma 5.2, the L real linear factors of fn are simple. Moreover,
each of these factors determines two antipodal flat points on the equator. Since every umbilic
point on the graph of f is isolated by hypothesis, every flat point on the equator is an umbilic
point at infinity. Therefore, Yk has exactly 2L umbilic points at infinity.

Thus, the set of singularities on S2 of the field Yk, which are all isolated, consists of the
umbilic points at infinity, which lie on the equator S1 ⊂ S2, and the finite umbilic points which
lie in antipodal pairs on the upper and lower hemispheres.

Applying the Poincaré-Hopf Theorem to the direction fields Yk defined on the whole 2-sphere
S2 which is split into parts to obtain, by Theorem 4.5,

2 =
∑

p∈(S2\S1)

Ind(p) +
∑
p∈S1

Ind(p)

= 2
∑

p umbilic

Ind(p) +
1

2

(
2L
)
. □
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6 Examples

Example 6.1 The graph of the polynomial f(x, y) = x + 2y + x2 − y2 has no umbilic points
because all of its points are hyperbolic. The homogeneous quadratic part of f is a hyperbolic
polynomial and each one of its real linear factors gives rise to two (antipodal) flat points. Clearly
the condition of Theorem 4.5, that ∇f1·(∇f2)

⊥ and |Hess f2| have no common real linear factors,
is satisfied since |Hess f2| = −4. Since every flat point is isolated, therefore there are four umbilic
points at infinity whose topological type is that of a Lemon. In Fig. 5 we show the foliations of
the fields Y1,Y2.

Field Y  in both hemispheres1
Field Y  in both hemispheres2

Fig. 5: Foliations of Yk corresponding to f = x+ 2y + x2 − y2

Example 6.2 The graph of the polynomial f(x, y) = xy+y2+xy2−x2y has one umbilic point.
Since the homogeneous cubic part of f is a hyperbolic polynomial, |Hess f3| has no real linear
factors. Therefore, the condition stated in Theorem 4.5, that ∇f2 · (∇f3)

⊥ and |Hess f3| have
no common real linear factors, is fulfilled. Thus, the flat points on the equator are determined
only by the real linear factors of f3. Since the umbilic point on the finite part is isolated, every
flat point on the equator is isolated, which leads to the presence of six umbilic points at infinity
with topological type of a Monstar. In Fig. 6 we draw the foliations of the fields Yk.

Fig. 6: Foliations of Yk corresponding to f = xy + y2 + xy2 − x2y

Example 6.3 We now provide some examples of homogeneous polynomials that reach the upper
bounds given in Corollary 4.8 and Theorem 4.11.
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• For n ≥ 2, the polynomials f(x, y) = (x2 + y2)n are elliptic. In this case there are no
umbilic points at infinity because the Hessian polynomial of f is positive away from the
origin.

• For n ≥ 2, consider the product of n real linear homogeneous polynomials in generic posi-
tion. They are hyperbolic polynomials of degree n [8] and have 2n umbilic points at infinity.

• In the cubic case, the polynomial f(x, y) = x(x2 + y2) has 6 umbilic points at infinity
because the polynomial |Hess f(x, y)| = 4(3x2 − y2) has two real linear factors. For the
quartic case, the polynomial f(x, y) = (x2 − y2)(x2 + y2) reaches the bound of 4 umbilic
points at infinity. In the remaining cases we do not know if the upper bounds are reached.

We now analyze some examples of classical homogeneous quadratic polynomials.

Example 6.4 1) The graph of f(x, y) = x2 + 2y2 has two umbilic points whose topological type
is a Lemon. Since f is elliptic, by Corollary 4.8, there are no umbilic points at infinity, Fig. 7.

2) The graph of the polynomial f(x, y) = x2 + y2 has only one umbilic point. Because this is
a surface of revolution, its meridian and parallel curves are lines of principal curvature. There
are no umbilic points at infinity because f is elliptic, Corollary 4.8. See Fig. 8.

Fig. 7: Foliations of f(x, y) = x2 + 2y2 Fig. 8: Foliations of f(x, y) = x2 + y2

Example 6.5 The graph of the polynomial f(x, y) = x2 − y2 has no umbilic points because f
is a hyperbolic polynomial. Thus, its Hessian polynomial |Hess f | does not contribute any flat
points on the equator. There are therefore, exactly four flat points on the equator determined by
f , all of which are isolated. In conclusion, there are 4 umbilic points at infinity. The foliations
of the lines of curvature are homeomorphic to those of example 6.1 (but they are not the same).
In Fig. 9, the foliation of the fields Yk, k = 1, 2 are shown.
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Field Y  in both hemispheres1
Field Y  in both hemispheres2

Fig. 9: Foliation of Yk associated to f(x, y) = x2 − y2

7 Proof of Theorem 4.5

Let q be an umbilic point at infinity. After a rotation of the uv-plane we can suppose that q
is the point (1, 0, 0). According to Lemma 4.2, the polynomial fn vanishes at (1, 0). So, v is
a factor of fn. In accordance with Lemma 5.2, v is a simple linear factor of fn. Therefore,
an−1 ̸= 0 assuming that

fn(u, v) = v

(
n−1∑
i=0

aiu
ivn−1−i

)
.

A simple calculation leads to Hf (p) = |Hess fn|(1, 0) = −
(
(n− 1) an−1

)2
< 0.

Consider now the fields Yk, k = 1, 2, restricted to the set {(u, v, ω) ∈ S2|u > 0}. In the chart
u = 1, they are described by the quadratic differential equation

ωC(1, v, ω)dv2 −
(
B(1, v, ω) + 2vC(1, v, ω)

)
dvdω + T (1, v, ω)dω2 = 0, (20)

where C(1, v, ω) = −(n− 1)a3n−1 + · · ·
(B + 2vC)(1, v, ω) = −n(n− 1)a3n−1v − (n− 1)(n− 2)a2n−1bn−1ω + · · ·

T (1, v, ω) =

{
2a21b1v + a1(1 + b21)ω + · · · for n = 2
n(n− 1)a2n−1bn−1v + (n− 1)2an−1b

2
n−1ω + · · · for n ≥ 3

and

fn−1(u, v) =
n−1∑
i=0

bi u
ivn−1−i. (21)

We claim that the form displayed in the left-hand side of equation (20) is positive in a neigh-
borhood of the origin. Indeed, on the one hand, Theorem 3.2 guarantees this property in the
complement of the equator ω = 0. On the other hand, the restriction to the equator of the
discriminant of this form is

(
B(1, v, 0) + 2vC(1, v, 0)

)2
, which according to Lemma 3.4 is the

single-variable polynomial
(

n
(n−1)fn(1, v)|Hess fn|(1, v)

)2
. This polynomial vanishes at a finite

19



number of points since, by Remark 3.5, the polynomial |Hess fn(u, v)| is different from the zero
polynomial.

The study around the origin of the direction fields defined by equation (20) will be divided
into two cases, according to the value of n.

i) Case n = 2. In this situation, a1 ̸= 0 and the differential form in the left-hand side of
equation (20) becomes

Ψ :=
(
− a21ω + · · ·

)
dv2 +

(
2a21v + · · ·

)
dvdω +

(
2a1b1v + (1 + b21)ω + · · ·

)
dω2. (22)

To understand the topological behavior of the fields defined by equation (22) we shall appeal
to the Blowing-up Method.

Consider the correspondence γ : R2 → RP 1 that associates to each point on the vω-plane
the slope of each straight line defined by the equation(

− a21ω + · · ·
)
α2 +

(
2a21v + · · ·

)
αβ +

(
2a1b1v + (1 + b21)ω + · · ·

)
β2 = 0.

The image set corresponding to the origin, through γ, is RP 1. The graph of γ is a set Γ in
R2 × RP 1 which, in coordinates, is described as

Γ =
{(

(v, ω), [α : β]
)
∈ R2 × RP 1 :

(
− a21ω + · · ·

)
α2 +

(
2a21v + · · ·

)
αβ

+
(
2a1b1v + (1 + b21)ω + · · ·

)
β2 = 0

}
.

The discriminant of the form Ψ is ∆Ψ(v, ω) = 4a41v
2+8a31b1vω+4a21(1+ b21)ω

2+ · · · . Since
the Hessian polynomial of ∆Ψ at the origin is 64a61, the function ∆Ψ has a Morse singularity
at the origin. Thus (Proposition 2.1, [3]), the set Γ is a smooth surface around the circle
{(0, 0)} × RP 1 and the projection Π : M → R2 defined by (v, ω, p) 7→ (v, ω), is a local
diffeomorphism away from the set Π−1(0), where Π−1(0) = {(0, 0, p)}.

Consider the following affine chart on RP 1. Assume α ̸= 0 and set p = β/α. We define

F (u, v, p) =
(
2a1b1v + (1 + b21)ω + · · ·

)
p2 +

(
2a21v + · · ·

)
p+

(
− a21ω + · · ·

)
.

Thus, in the space R3 = {(v, ω, p)} the set Γ becomes the smooth surface M = {(v, ω, p) :
F (v, ω, p) = 0}.

Remark 7.1 The vector field ξ = Fp
∂

∂v
+ pFp

∂

∂ω
−
(
Fv + pFω

) ∂

∂p
is tangent to M .

Moreover, ξ is a lift on M of the two solution fields (22), that is, for each point q ∈ M the
vector ξ(q) is sent, under the differential of Π, into the vector Fp

∂
∂v + pFp

∂
∂ω .

20



Proposition 7.2 The vector field ξ has only one zero whose topological type is a saddle.

Proof. The zeros of ξ on M are given by the equations F = pFp = Fv + pFω = 0. The
solution set to the system F = 0, pFp = 0 is the set {(0, 0, p) : p ∈ R}. Thus, the singular
points of ξ are the zeros of the cubic single-variable polynomial (Fv + pFω)

∣∣
(0,0,p)

= p Q(p),

where Q(p) = (1+ b21)p
2 +2a1b1p+ a21. Since the discriminant of Q is the negative number

−a21, thus the only singular point of ξ is the origin.

We now prove that ξ has a saddle point at the origin. Since ∂F
∂ω |0̄ ̸= 0, the surface M can

be locally written as ω = g(v, p), that is, F (v, g(v, p), p) ≡ 0. From this, it follows

∂F

∂v
+

∂F

∂ω

∂g

∂v
= 0,

∂F

∂p
+

∂F

∂ω

∂g

∂p
= 0. (23)

To determine the linear part of ξ at the origin we obtain the linear part at the origin of the
plane vector field ξ̄ = Fp

∂
∂v − (Fv + pFω)

∂
∂p which is the projection of ξ into the vp-plane.

To accomplish this, write

ξ̄ =
(
α1v + α2p+ · · ·

) ∂

∂v
+
(
β1v + β2p+ · · ·

) ∂

∂p
.

Note that ∂F
∂v |0̄ = 0 because the polynomial Fv + pFω vanishes at the origin. Using the

equalities (23) we infer that ∂g
∂v

∣∣
(0,0)

= 0; and also, ∂g
∂p

∣∣
(0,0)

= 0 owing to the fact that

Fp(0, 0, 0) = 0. Thus,

α1 =
∂Fp

∂v

∣∣∣
(0,0)

=
(

∂2F
∂v∂p + ∂2F

∂p∂ω
∂g
∂v

) ∣∣∣
(0,0)

= ∂2F
∂v∂p

∣∣∣
(0,0)

= 2a21 > 0.

α2 =
∂Fp

∂p

∣∣∣
(0,0)

=
(
∂2F
∂p2

+ ∂2F
∂p∂ω

∂g
∂p

) ∣∣∣
(0,0)

= ∂2F
∂p2

∣∣∣
(0,0)

= 0.

β1 = −∂(Fv+pFω)
∂v

∣∣∣
(0,0)

= −∂2F
∂v2

∣∣∣
(0,0)

= 0.

β2 = −∂(Fv+pFω)
∂p

∣∣∣
(0,0)

= −a21 < 0.

We conclude that the origin is a saddle point (Fig. 10).

Remark 7.3 ([2], p.152) The projection into the vω-plane of the integral curves of the
field ξ under the map Π leads to the conclusion that the origin is a singular point whose
topological type is a Lemon (Fig. 11).
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p = 0

p < 0

p > 0

p = 

p = 0

M

Fig. 10: One saddle point in the surface M

Π

Fig. 11: Projection of a saddle point

ii) Case n ≥ 3. The differential form (20) becomes, after dividing it by (n− 1)an−1, into

Ψ :=
(
− a2n−1ω + · · ·

)
dv2 +

(
na2n−1v + (n− 2)an−1bn−1ω + · · ·

)
dvdω

+
(
nan−1bn−1v + (n− 1)b2n−1ω + · · ·

)
dω2. (24)

Since the quadratic part of the discriminant of Ψ is n2a2n−1(an−1v + bn−1w)
2, the origin is

not a Morse singularity of ∆Ψ. Thus, we cannot proceed as in the previous case.

As a first step, consider the change of coordinates on the vω-plane(
v
ω

)
=

(
1 − bn−1

an−1

0 1

)(
X
Y

)
.

The differential form Ψ of (24) is transformed into the differential form

Ω̃ = Ã(X,Y )dX2 + B̃(X,Y )dXdY + C̃(X,Y )dY 2,

where

Ã(X,Y ) = a

(
X − bn−1

an−1
Y, Y

)
= Y (−a2n−1 + · · · ),

B̃(X,Y ) =
(
b− 2

bn−1

an−1
a
)(

X − bn−1

an−1
Y, Y

)
= na2n−1X + · · · ,

C̃(X,Y ) =

(
b2n−1

a2n−1

a− bn−1

an−1
b+ c

)(
X − bn−1

an−1
Y, Y

)
= · · · ,
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and a, b, c are the first, second and third coefficients of (24). In what follows we consider
the differential form Ω obtained of dividing Ω̃ by a2n−1, that is,

Ω := A(X,Y )dX2 +B(X,Y )dXdY + C(X,Y )dY 2, (25)

A(X,Y ) = −Y +
3n−3∑
i+j=2

aijX
iY j , B(X,Y ) = nX+

3n−3∑
i+j=2

bijX
iY j , C(X,Y ) =

3n−3∑
i+j=2

cijX
iY j .

As some terms of the previous coefficients depend on the degree n we split the following
analysis into two cases.

a) Case n = 3. Consider the function GΩ : R2 → R3 that associates to each pair
(X,Y ) ∈ R2 the coefficients (C(X,Y ), B(X,Y ), A(X,Y )) of the differential form Ω.

The Jacobian matrix DGΩ of the map GΩ at the origin is

0 0
3 0
0 −1

 .

Since the rank of DGΩ at the origin is 2, the origin is called a semi-simple singular point
of Ω according to the notation of [13]. Moreover, Ω has the type of E(λ) for λ = 3. By
Remark 10.1 and Lemma 9.1 of [13], the origin is a singular point of Ω with topological
type of a Monstar.

b) Case n ≥ 4. As a second step, we will now transform the form (25) into a suitable
differential form through the Blowing-up method. On the VW -plane consider the iso-
morphism

ϕ : R2 \ {V = 0} → R2 \ {X = 0} defined as ϕ(V,W ) = (V, V W ) = (X,Y ),

that is, V = X,W = Y/X. The pullback ϕ∗Ω of Ω is the differential form

ϕ∗Ω = AdV 2 +BdV dW + CdW 2 (26)

where a, b, c denote respectively the first, second and third coefficients of Ω, and

A(V,W ) = W 2c(V, V W ) +Wb(V, V W ) + a(V, V W ),

B(V,W ) = V b(V, V W ) + 2VWc(V, V W ),

C(V,W ) = V 2c(V, V W ).

Since V is a factor of a, b, c, rewrite the form ϕ∗Ω as ϕ∗Ω = V Ω1 where

Ω1 := A1 dV 2 + V B1 dV dW + V 2C1 dW 2,
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and A1, B1, C1 are polynomials in R[V,W ]. A straightforward calculation shows that

A1(V,W ) = (n− 1)W + VWg1, B1(V,W ) = n+ V g2, C1(V,W ) = V g3, (27)

where gi, i ∈ {1, 2, 3} is a polynomial in R[V,W ]. Note that the origin is the only
singular point of the form Ω1 on the line V = 0.

In a neighborhood of the origin on the VW -plane the two fields of directions defined by
Ω1 are described by(

− 2A1

)
dV +

(
− V B1 + (−1)k

√
V 2(B2

1 − 4A1C1)
)
dW = 0, k ∈ {1, 2}.

Let’s denote by Fk(Ω1), k ∈ {1, 2} the foliations corresponding to these direction fields.
Consider now the vector fields

Yk(V,W ) := (V Tk, 2A1), with Tk = −B1 + (−1)k
√

B2
1 − 4A1C1.

In a punctured neighborhood of the origin the foliation F1(Ω1) is tangent to the vector
field Y1 if V > 0, and tangent to the vector field Y2 if V < 0. Analogously, the foliation
F2(Ω1) is tangent to Y2 when V > 0, and tangent to Y1 for V < 0.

From expressions (27) we infer that T1(0, 0) = −2n, T2(0, 0) = 0 and the linear part of
Y1 at the origin is

DY1|(0,0) =

(
V ∂

∂V T1 + T1 V ∂
∂W T1

2 ∂
∂V A1 2 ∂

∂W A1

)∣∣∣∣
(0,0)

=

(
−2n 0
0 n− 1

)
.

Therefore, the origin is a saddle point of the field Y1 and the eigenspaces of DY1|(0,0)
are the coordinate axes.

On the other hand, consider the vector field

Z1(V,W ) = (2V C1(V,W ), T1(V,W )).

Since T1(0, 0) ̸= 0, the origin is a nonsingular point of this field. Moreover, because of
the equality T1(V,W )T2(V,W ) = 4A1(V,W )C1(V,W ), the field Z1 satisfies the relation

2A1(V,W )Z1(V,W ) = T1(V,W )Y2(V,W ),

which proves that Z1 is tangent to the foliation of Y2 (Fig. 12).

In order to carry out a complete analysis of the singularity we will do another blowing-up
of Ω as a third step.
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W

V

Fig. 12: Foliation F1(Ω1)

Consider the map φ(V,W ) = (VW 2,W ) = (X,Y ). The pullback φ∗Ω of the form Ω is

φ∗Ω = (W 4A) dV 2 +W 2(B + 4VWA) dV dW + (4V 2W 2A+ 2VWB + C) dW 2.

A straightforward calculation shows that φ∗Ω = W 3Ω2 where

Ω2 = W 2A2 dV 2 +WB2 dV dW + C2 dW 2, (28)

with A2(V,W ) = −1 +Wh1, B2(V,W ) = b02 + (n− 4)V +Wh2,

C2(V,W ) = c03 + (c11 + 2b02)V + (2n− 4)V 2 +Wh3, and

hk, is a polynomial in R[V,W ] for k ∈ {1, 2, 3}.

The two fields of directions defined by Ω2 are described in a neighborhood of the origin
on the VW -plane by(

−WB2 + (−1)k
√

W 2(B2
2 − 4A2C2)

)
dV +

(
− 2C2

)
dW = 0, k ∈ {1, 2}.

Let’s denote by Fk(Ω2), k ∈ {1, 2} the foliations of these fields. Consider the vector
fields

Yk(V,W ) := (2C2, W Tk), with Tk = −B2 + (−1)k
√

B2
2 − 4A2C2.

In a punctured neighborhood of the origin the foliation F1(Ω2) is tangent to the vector
field Y1 if W > 0, and tangent to the vector field Y2 if W < 0. Analogously, the
foliation F2(Ω2) is tangent to Y2 when W > 0, and tangent to Y1 for W < 0.

On the other hand, in the following analysis we will also consider the vector fields

Zk(V,W ) = (2V C2(V,W ), Tk(V,W )) for k ∈ {1, 2}.

Because of the equality T1(V,W )T2(V,W ) = 4A2(V,W )C2(V,W ), the field Zk, k ∈
{1, 2} satisfies the relation

2C2(V,W )Zk(V,W ) = Tk(V,W )Y3−k(V,W ). (29)
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In what follows we will need the following coefficients:

b02 =
(n− 2)(n− 3)K

(n− 1)a3n−1

, c11 =
2n(n− 2)K

(n− 1)a3n−1

, c03 =
2(n− 2)2K2

(n− 1)a6n−1

, (30)

where K := an−2b
2
n−1 + a2n−1rn−2 − an−1bn−1bn−2 and fn−2(u, v) =

n−2∑
i=0

ri u
ivn−2−i.

The singular points of Ω2 on the line W = 0 are given by the equation C2(V, 0) = 0,
that is, c03 + (c11 + 2b02)V + (2n− 4)V 2. The discriminant of this quadratic equation

is ∆ = 4(n−2)2K2

(n−1)2a6n−1
which is positive if and only if K ̸= 0. Therefore, the singular points

on W = 0 are

pj :=

(
− (2n− 3)K

2(n− 1)a3n−1

(−1)j

√
K2

4(n− 1)2a6n−1

, 0

)
, for j ∈ {1, 2}.

Suppose K/an−1 > 0. This condition implies that V1 = − K
a3n−1

, V2 = − (n−2)K
(n−1)a3n−1

and

both roots are negative. From expressions (30) we derive that T1(p1) = − 4K
(n−1)a3n−1

,

T1(p2) = − 2(n−2)K
(n−1)a3n−1

and the linear part of Y1 at pj is

DY1|Pj =



 − 4(n−2)K
(n−1)a3n−1

2∂C2
∂W (p1)

0 − 4K
(n−1)a3n−1

 for j = 1,

 4(n−2)K
(n−1)a3n−1

2∂C2
∂W (p1)

0 − 2(n−2)K
(n−1)a3n−1

 for j = 2.

Therefore, p1 is a node point of the field Y1, and p2 is a saddle point. On the other hand,
since T1(pj) ̸= 0 for j ∈ {1, 2}, the point pj is a nonsingular point of Z1. Moreover,
according to (29) the field Z1 is tangent to the foliation of Y2. We remark that analogous
results are obtained when K/an−1 < 0.

From all the previous analysis we conclude that the the origin on the vω-plane has the
topological type of a Monstar when K ̸= 0. This completes the proof of Theorem 4.5.
□
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