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Abstract. It is proven that the only incompressible Euler fluid flows with fixed straight streamlines are those generated by
the normal lines to a round sphere, a circular cylinder or a flat plane, the fluid flow being that of a point source, a line
source or a plane source at infinity, respectively. The proof uses the local differential geometry of oriented line congruences
to integrate the Euler equations explicitly.
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In Newtonian gravitational theory, static fields whose lines of force are straight lines must be generated
by the normal lines to either a round sphere, a circular cylinder or a flat plane.

A similar situation holds in general relativity, where both static vaccuum and Weyl-type electrostatic
gravitational fields with geodesic lines of force are generated by spheres, cylinders and planes, although
new non-Newtonian solutions exist in both cases [4,6,7].

Incompressible Euler flows model the non-relativistic hydrodynamics of fluids with no internal friction.
They consist of a time-varying vector field V on R

3 called the fluid velocity, together with a time-varying
function p : R3 → R called the pressure. The streamlines of the fluid are the integral curves of the fluid
velocity, which in general evolve in time.

The Euler equations for an incompressible fluid in R
3 are

∂

∂t
V + ∇V V = −∇p (1)

∇ · V = 0, (2)

where ∇ is the Levi-Civita connection of the flat Euclidean metric. The second equation, the incompress-
ibility condition, states that the fluid velocity vector is divergence-free. For foundational work on fluid
flows see for example [1]. For a modern overview of the Euler equations from a variety of perspectives see
[2,5] and references therein.

The purpose of this paper is to prove:

Main Theorem:
The only incompressible Euler fluid flows with fixed straight streamlines are the solutions generated

by the normals to either a round sphere, a circular cylinder or a flat plane, the fluid flow being that of a
point source, a line source or a plane source at infinity, respectively.

This is proven as follows. The condition that the streamlines are straight implies that there exists a 2-
parameter family of oriented lines (an oriented line congruence) to which the velocity vector is everywhere
tangent. Using a special coordinate system fitted to the line congruence the Euler equations are explicitly
integrated to yield the three solutions.

The trichotomy arises from the possible rank of the map that takes an oriented line to its direction,
restricted to the line congruence of the fluid flow. This rank can either be two, one or zero, leading
ultimately to the normals of a round sphere, a circular cylinder or a flat plane, respectively.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-022-00725-z&domain=pdf
http://orcid.org/0000-0002-7437-5046
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The next section introduces some background on the local geometry of oriented line congruences.
Further details can be found in [8].

The three fluid solutions are discussed in Examples 2.1, 2.2 and 2.3 of Sect. 2. All of the solutions
have vanishing twist, demonstrating that the rigid vorticity associated with a twisting line congruence is
incompatible with the Euler equations.

In Sect. 3 it is shown how every line congruence has a family of divergence-free vector fields tangent
to it. These vector fields have singularities at the focal set of the line congruence. Thus fluid flow and
geometric optics meet.

Having solved equation (2) we turn to solving equations (1). At a point in the fluid flow, the rank of
the associated oriented line congruence is two, one or zero. Section 4 contains the proof that rank two
straight streamlines must be the normals to a round sphere. This is first proven for steady and then for
non-steady flows.

Section 5 contains the proof that rank one straight streamlines must be the normals to a circular
cylinder. This is again first proven for steady and then for non-steady flows. The final section contains
the proof of the rank zero case.

The Main Theorem is also likely to hold for the full incompressible Navier-Stokes equations [3], as the
introduction of dissipative effects would seem to make straight streamlines even less likely. On the other
hand, given the non-Newtonian examples alluded to earlier, the relativistic Euler equations [9] may well
admit solutions with geodesic streamlines that are not of the three above classes.

The Euler equations can be extended to arbitrary Riemannian 3-manifolds and incompressible fluids
with geodesic streamlines considered. Here again the incompressibility condition can be solved for a
vector field that has singularities at the focal points of the associated geodesic congruence. The possible
complexity of this focal set in general means that proceeding further along these lines becomes difficult
unless one restricts to 3-manifolds of negative curvature.

1. Oriented Line Congruences

An oriented line congruence is a 2-parameter family of oriented lines in R
3, or, equivalently, a surface Σ

in the space L(R3) of all oriented lines. The 4-manifold L(R3) can be identified with the total space of
the tangent bundle to the 2-sphere, TS2. Thus it has a natural bundle structure π : L(R3) → S2, taking
an oriented line to its direction. For semantic reasons, on occasion we drop the word oriented.

A oriented line congruence Σ is graphical if the projection π restricted to Σ has rank two or, equiva-
lently, it arises as the graph of a local section of this bundle.

Taking the complex coordinate ξ on S2 given by stereographic projection from the North pole, a rank
two oriented line congruence is given local by a map ξ �→ (ξ, η = F (ξ, ξ̄)), where η is a complex fibre
coordinate and F a complex function [8]. Here (ξ, η) ∈ C

2 are local coordinates on L(R3) = TS2 minus
the fibre over the South pole.

For such an oriented line congruence, define the shear σ, divergence θ and twist λ by

σ = −∂F̄

∂ξ
, ρ = θ + iλ = (1 + ξξ̄)2

∂

∂ξ

(
F

(1 + ξξ̄)2

)
. (3)

On the other hand, a rank one oriented line congruence can be parameterized by (u, v) ∈ R
2 via

(u, v) �→ (ξ(u), η(u, v)). For such line congruences, define the real quantity

β =
(∂vη∂uη̄ − ∂uη∂vη̄)(1 + ξξ̄) − 2(η̄ξ∂uξ̄∂vη − ηξ̄∂uξ∂v η̄)

(∂vη∂uξ̄ − ∂v η̄∂uξ))(1 + ξξ̄)
. (4)

A rank zero oriented line congruence consists of all oriented lines with a given direction ξ0 ∈ S2, and are
thus normal to a flat plane in R

3. In terms of local coordinates, it can be given by (u, v) �→ (ξ0, η = u+iv).
To connect with Euclidean 3-space with flat coordinates (x1, x2, x3), use the map Φ : L(R3)×R → R

3

that takes an oriented line (ξ, η) and a number r, to the point Φ((ξ, η), r) ∈ R
3 which lies on the oriented
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line at an oriented distance r from the point closest to the origin:

z = x1 + ix2 =
2(η − ξ̄2η̄)
(1 + ξξ̄)2

+
2ξ

1 + ξξ̄
r, x3 = −2(ξη̄ + ξ̄η)

(1 + ξξ̄)2
+

1 − ξξ̄

1 + ξξ̄
r. (5)

The distance from a point (z, z̄, x3) on the oriented line with direction ξ to the point on the line closest
to the origin is

r =
zξ̄ + z̄ξ + x3(1 − ξξ̄)

1 + ξξ̄
. (6)

Given an oriented line congruence Σ, we can locally parameterize R
3 by U × R, for U ⊂ Σ, using the

parameter r along each line. For rank two oriented line congruences discussed above, the coordinates are
(ξ, ξ̄, r), while for rank one and zero congruences they are (u, v, r).

For these coordinate systems we must stay away from the focal set of the line congruence (if it has
one) - which is at most two points on each line [8].

Oriented line congruences without focal points foliate R
3 [10] and, aside from the parallel line case,

are twisting everywhere. We will show that only the parallel case arises as straight streamlines of incom-
pressible Euler fluid flows without focal points. For the other solutions, the focal points are singularities
of the velocity vector and can be interpreted as fluid sources or sinks.

2. The Three Solutions

Consider a flow with straight streamlines. That is, at each point the fluid velocity V is tangent to an
oriented line in a 2-parameter family of oriented lines. An Euler flow is said to be steady if the fluid
velocity and pressure are independent of time t.

The following examples are the canonical solutions of the Euler equations with straight streamlines.

Example 2.1. The set of normals to a round sphere generates a solution of the Euler equations with the
fluid velocity vector and pressure given by

V =
H(t)
r2

∂

∂r
p = p0 − H2

2r4
+

Ḣ

r
,

for constant p0, where r is the distance to the centre of the sphere and H a free function of time. The
solution is steady if H is constant.

The centre of the sphere is a singularity for the velocity and pressure, and the flow can be interpreted
as a point source or sink. As r → ∞ the fluid velocity goes to zero while the pressure becomes constant.

The associated rank two oriented line congruence is η = 1
2 (z0−2t0ξ− z̄0ξ

2) where (z0, t0) ∈ C×R = R
3

is the centre of the sphere. By direct computation using equations (3) one finds that σ = ρ = 0.

Example 2.2. The set of normals to a circular cylinder generates a solution of the Euler equations with
fluid velocity vector and pressure given by

V =
H(t)

r

∂

∂r
p = p0 − H2

2r2
− Ḣ ln |r|,

for constants p0, where r is the distance to the axis of symmetry of the cylinder and H a free function of
time. The flow is steady for H constant.

The axis of symmetry is a singularity for the velocity and pressure, and the flow can be interpreted as
a line source or sink. As r → ∞ the fluid velocity goes to zero but only in the steady case is the pressure
bounded.

After a suitable rotation and translation, the singularity can be lined up with the x2 axis in R
3, and

the associated rank one oriented line congruence is ξ = u, η = iv. The function β given by equation (4)
then turns out to be zero.
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Example 2.3. The set of normals to a flat plane generates a solution of the Euler equations and the fluid
velocity vector and pressure are

V = (H(t) + K(u, v)))
∂

∂r
p = p0 − Ḣr,

for constant p0, where r is the distance to the plane and u, v are parameters on the plane. The steady
solution is finite, indeed constant, everywhere, while the pressure of the non-steady solution grows linearly
at infinity. This can be interpreted as a plane source at infinity.

Choosing the plane to be the x1x2−plane, the associated rank zero oriented congruence is simply
ξ = 0, η = (u + iv)/2.

3. Incompressibility

The divergence-free condition (2) models incompressible fluid flow. Every line congruence admits a family
of tangent vectors which are divergence-free - one simply scales the unit tangent vector at each point by
a suitable factor.

Proposition 3.1. Let Σ ⊂ L(R3) be a rank two line congruence given by η = F (ξ, ξ̄). Then the vector field

V =
H(ξ, ξ̄)

(r + θ)2 + λ2 − |σ|2
∂

∂r
, (7)

is divergence free for any real function H, where θ, λ and σ are given by equations (3).

Proof. Change from Euclidean coordinates (z = x1 + ix2, x3) to congruence coordinates (ξ, ξ̄, r) via
equations (5) with η = F (ξ, ξ̄). Pull back the flat metric in congruence coordinates and compute the
divergence

∇ · V = ∇kV k =
∂V k

∂xk
+ Γk

klV
l,

with V ξ = 0. The resulting divergence-free condition can be integrated to yield the stated result. �
Note that this vector field blows up at the points where

(r + θ)2 + λ2 − |σ|2 = 0,

which is exactly the focal set of the line congruence [8].

Proposition 3.2. Let Σ ⊂ L(R3) be a rank one line congruence. Then the vector field

V =
H(u, v)
r + β

∂

∂r
, (8)

is divergence free for any function H, where β is given by equation (4).

Proof. from Euclidean coordinates (z = x1 + ix2, x3) to congruence coordinates (u, v, r) via equations (5)
with (ξ(u), η(u, v)). Pull back the flat metric into congruence coordinates and compute the divergence
with V u = V v = 0.

The divergence-free condition can then be integrated for V r. �
Finally, for rank zero oriented line congruences:

Proposition 3.3. Let Σ ⊂ L(R3) be a rank zero oriented line congruence - that is the set of parallel lines
with some fixed direction. Choose a plane perpendicular to the lines and let (u, v) be parameters on the
plane. Then the vector field

V = H(u, v)
∂

∂r
, (9)

is divergence free for any real function H where β is given by equation (4) and r is the distance to the
plane.
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Proof. If we fix the plane to be the x1x2−plane so that x1 = u, x2 = v, x3 = r then for a fluid velocity

V = H(u, v, r)
∂

∂r
,

the divergence-free condition is simply

∂H

∂r
= 0,

as claimed. �

4. Rank Two Straight Streamlines

In this Section incompressible Euler flows with straight rank two streamlines are considered. As the
associated oriented line congruence is of rank two throughout, it is given as the graph of a section
η = F (ξ, ξ̄), for some complex function F . The first order quantities σ, λ and θ are defined by equations
(3).

For ease of exposition, the steady rank two fluid flow is solved first in Sect. 4.1. Non-steady rank two
flows split into three cases: λ2 − |σ|2 > 0, λ2 − |σ|2 = 0 and λ2 − |σ|2 < 0 and is solved in Sect. 4.2.

4.1. Steady Rank Two Flow

Theorem 4.1. A rank two line congruence Σ generates a steady solution of the incompressible Euler
equations (1) and (2) iff Σ is the set of normals to a round sphere and the fluid velocity vector and
pressure are

V =
H0

r2
∂

∂r
p = p0 − H2

0

2r4
,

for constants H0, p0, where r is the distance to the centre of the sphere.

Proof. Impose the divergence-free condition on a vector field tangent to the line congruence by insisting
from equation (7) that

V ξ = V ξ̄ = 0 V r =
H(ξ, ξ̄)

(r + θ)2 + λ2 − |σ|2 .

Writing the Euler equations in congruence coordinates (ξ, ξ̄, r) leads to

∂V ξ

∂t
= 0 ⇐⇒ ∂p

∂ξ
= − 2η̄

(1 + ξξ̄)2
∂p

∂r
, (10)

and
∂V r

∂t
= 0 ⇐⇒ ∂p

∂r
=

2(r + θ)H2

((r + θ)2 + λ2 − |σ|2)3 .

This last can be integrated to yield

p = K(ξ, ξ̄) − H2

2((r + θ)2 + λ2 − |σ|2)2 .

Substituting this back in equation (10) and comparing powers of r one finds from the r6 term that
K = p0 = constant, while from the r2 term that H = H0 = constant. The r term is

∂θ

∂ξ
+

2F̄

(1 + ξξ̄)2
= 0. (11)
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Differentiating this with respect to ξ̄ and projecting onto the imaginary part yields

∂

∂ξ

(
2F

(1 + ξξ̄)2

)
− ∂

∂ξ̄

(
2F̄

(1 + ξξ̄)2

)
=

2iλ

(1 + ξξ̄)2
= 0.

where λ is the twist of the line congruence defined in the second of equations (3). Thus Σ is Lagrangian
and the lines are orthogonal to a 1-parameter family of surfaces in R

3 [8]. By equation (11) the orthogonal
surface in R

3 is of constant mean curvature.
Finally the constant term is now

∂(|σ|)
∂ξ

= 0.

The following identity holds between derivatives

(1 + ξξ̄)2
∂

∂ξ̄

(
σ

(1 + ξξ̄)2

)
=

∂(θ + iλ)
∂ξ

+
2F̄

(1 + ξξ̄)2
,

and so in our case, we know that

(1 + ξξ̄)2
∂

∂ξ̄

(
σ

(1 + ξξ̄)2

)
= 0.

If σ 
= 0, and σ = |σ|eiφ this reduces to

∂

∂ξ̄

(
eiφ

(1 + ξξ̄)2

)
.

This is easily seen to be impossible, so we conclude that σ = 0 and Σ is the set of lines through a point.
Moreover, the velocity and pressure of the fluid are as stated. In particular, if we translate the centre

to the origin, then η = 0 and so σ = λ = θ = 0 and

V r =
H0

r2
, p = p0 − H2

0

2r4
.

Finally r is the distance to the centre of the sphere. �

4.2. Non-Steady Rank Two Flow

We now drop the condition that the fluid flow be steady and find that the same result applies if the line
congruence to which it is tangent remains fixed:

Theorem 4.2. A fixed rank two line congruence Σ generates a solution of the incompressible Euler equa-
tions iff Σ is the set of normals to a round sphere, and the fluid velocity vector and pressure are those
given in Example 2.1.

Proof. Writing the Euler equations in congruence coordinates (ξ, ξ̄, r) we find that

∂p

∂ξ
= − 2η̄

(1 + ξξ̄)2
∂p

∂r
, (12)

and

1
(r + θ)2 + λ2 − |σ|2

∂H

∂t
= −∂p

∂r
+

2(r + θ)H2

((r + θ)2 + λ2 − |σ|2)3 . (13)

This last equation can be integrated explicitly in r when the three cases (i) λ2−|σ|2 > 0, (ii) λ2−|σ|2 > 0
and (iii) λ2 − |σ|2 > 0 are treated separately.
Case (i):
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Assume λ2 − |σ|2 > 0. Equation (13) integrates to

p = K(ξ, ξ̄) − H2

2((r + θ)2 + λ2 − |σ|2)2 − Ḣ√
λ2 − |σ|2 tan−1

(
r + θ√

λ2 − |σ|2

)
.

where a dot represents differentiation with respect to time t. Substituting this in equation (12) yields an
equation of the form

α(ξ, ξ̄, r) + β(ξ, ξ̄, r) tan−1

(
r + θ√

λ2 − |σ|2

)
= 0,

where the functions α and β are 6th order polynomials in r. Thus we must have α = 0 and β = 0 and
each coefficient must vanish.

The vanishing of the r6 coefficient of α and β yield K = K0 = constant and

Ḣ = A(t)(λ2 − |σ|2).
Moving to the vanishing of the 5th and 4th orders of α we obtain λ2 − |σ|2 = constant, and

∂θ

∂ξ
+

2F̄

(1 + ξξ̄)2
= 0.

As in the steady case, this implies that λ = 0, which contradicts λ2 > |σ|2. Thus, there are no solutions
for case (i).
Case (ii):

Assume λ2 − |σ|2 = 0. Equation (13) integrates to

p = K(ξ, ξ̄) − H2

2(r + θ)4
+

Ḣ

r + θ
.

where a dot represents differentiation with respect to time t. Substituting this in equation (12) yields an
equation which is the vanishing of a 6th order polynomial in r.

The vanishing of the r6 and r4 coefficients yield K = p0 = constant and Ḣ = A(t), while the 3rd
order implies

∂θ

∂ξ
+

2η̄

(1 + ξξ̄)2
= 0.

As before, we see that this implies λ = 0 and since λ2−|σ|2 = 0, we have σ = 0. Thus the line congruence
is the lines through a single point and the fluid velocity and pressure are as stated.
Case (iii):

Assume λ2 − |σ|2 < 0. Equation (13) integrates to

p = K(ξ, ξ̄) − H2

2((r + θ)2 + λ2 − |σ|2)2 − Ḣ

2
√|σ|2 − λ2

ln

(
r + θ − √|σ|2 − λ2

r + θ +
√|σ|2 − λ2

)
.

where a dot represents differentiation with respect to time t. Substituting this in equation (12) yields an
equation of the form

α(ξ, ξ̄, r) + β(ξ, ξ̄, r) ln

(
r + θ − √|σ|2 − λ2

r + θ +
√|σ|2 − λ2

)
= 0,

where the functions α and β are again 6th order polynomials in r, each coefficient of which must vanish.
An identical calculation through descending powers of r as case (i) yields the same result: σ = λ = 0.
This contradicts the assumption that λ2 − |σ|2 < 0 and so there are no solutions in this case. �
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5. Rank One Straight Streamlines

In this section incompressible Euler flows with straight rank one streamlines are considered. The steady
flow case is proven first in Sect. 5.1, followed by the non-steady flow case in Sect. 5.2.

5.1. Steady Rank One Flow

Theorem 5.1. A rank one line congruence Σ generates a steady solution of the incompressible Euler
equations iff Σ is the set of normals to a circular cylinder, and the fluid velocity vector and pressure are

V =
H0

r

∂

∂r
p = p0 − H2

0

2r2
,

for constants H0, p0, where r is the distance to the centre of the cylinder.

Proof. As the associated oriented line congruence is of rank one throughout, it is given by a map (u, v) �→
(ξ(u), η(u, v)). The first order real quantity β is defined by equation (4).

Consider then a rank one line congruence and divergence-free vector field given by equation (8):

V =
H

r + β

∂

∂r
,

where H is an arbitrary function (u, v) and β is given by equation (4). Writing everything in terms of
the congruence coordinates (u, v, r) the first two Euler equations yield

∂p

∂u
= − 2

(1 + ξξ̄)2
∂p

∂r

(
η̄

dξ

du
+ η

dξ̄

du

)
∂p

∂v
= 0.

The third Euler equation then gives

∂p

∂r
=

H2

(r + β)3
,

which integrates to

p = p0 − H2

2(r + β)2
. (14)

Since we know that p is independent of v for all r, this means that p0, β and H are functions only of u.
Substituting equation (14) into the first Euler equation we obtain an expression that is cubic in r.

Thus each of the coefficients must vanish. In particular, from the cubic term p0 = constant and the linear
term H = constant, while the zeroth order term in r now says that

dβ

du
= − 2

(1 + ξξ̄)2

(
η̄

dξ

du
+ η

dξ̄

du

)
.

Only the complex function η depends on v and hence, after a suitable choice of this parameterization,
the previous equation has solution

η =
(

− (1 + ξξ̄)2

4|ξ̇|2
dβ

du
+ iv

)
dξ

du
, (15)

where we introduce the dot for differentiation with respect to u.
Substituting for η in the final Euler equation, the r2v term says that

(1 + ξξ̄)( ˙̄ξξ̈ − ξ̇ ¨̄ξ) − 2(ξ̄ξ̇ − ξ ˙̄ξ)ξ̇ ˙̄ξ = 0.

This is precisely the geodesic equation on the 2-sphere in holomorphic coordinates, and we conclude that
the line congruence projects to a great circle on S2.
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By a rotation arrange that ξ = u so that the great circle passes through the north pole (ξ = 0) and
aligns with the real axis. Now the vanishing of the r2 term of the final Euler equation requires that

(1 + u2)2β̈ + 2u(1 + u2)β̇ + 4β = 0,

which has general solution

β =
b0 + 2b1u − b0u

2

1 + u2
,

for constants b0, b1.
Substituting this into equation (15) we find the line congruence must be

ξ = u η = − 1
2 (b1 − 2b0u − b1u

2) + iv.

Finally, a translation in the x1x3−plane sets b0 and b1 to zero and we get the line congruence

ξ = u η = iv.

which consists of all of the horizontal lines that intersect the x3−axis. These are the lines normal to a
circular cylinder, and the velocity vector and pressure are found to be as stated in the Theorem where
now r is the distance to the centre of the cylinder. �

5.2. Non-Steady Rank One Flow

We now drop the condition that the fluid flow be steady:

Theorem 5.2. A fixed rank one line congruence Σ generates a solution of the incompressible Euler equa-
tions iff Σ is the set of normals to a circular cylinder, and the fluid velocity vector and pressure are those
given in Example 2.2.

Proof. Writing the Euler equations in congruence coordinates (u, v, r) we find that

∂p

∂u
= − 2

(1 + ξξ̄)2
∂p

∂r

(
η̄

dξ

du
+ η

dξ̄

du

)
∂p

∂v
= 0. (16)

The third Euler equation then gives

1
r + β

∂H

∂t
= −∂p

∂r
+

H2

(r + β)3
,

which integrates to

p = p0 − H2

2(r + β)2
− Ḣ ln |r + β|.

for function p0(u, v, t). In fact, since p must be independent of v (for all r) we conclude that that p0 and
H can only depend on u.

Substituting this back into the first of equations (16) and proceeding by the order of r in a manner
similar to the proof of Theorem 5.1, the result follows. �

6. Rank Zero Straight Streamlines

In this section incompressible Euler flows with straight rank zero streamlines are considered.

Theorem 6.1. A rank zero oriented line congruence Σ generates a solution of the incompressible Euler
equations iff Σ is the set of normals to a flat plane, and the fluid velocity vector and pressure are those
given in Example 2.3.
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Proof. A rank zero oriented line congruence is a 2-parameter family of parallel lines and thus forms the
set of normals to a flat plane. By a rotation we can set the direction of the oriented lines to be the positive
x3−direction and so ξ = 0. Parameterize the plane by (x1, x2) = (u, v) and so η = (u + iv)/2.

We know from equation (9) that, as a time varying divergence-free vector field tangent to the oriented
line congruence, the fluid velocity is

V = F (u, v, t)
∂

∂r
,

for some function F , where r = x3.
Two of the Euler equations now say that p is independent of u and v, while the third says that

∂F

∂t
= −∂p

∂r
.

We conclude that F = H(t) + K(u, v) for some functions H and K and

p = p0 − ∂H

∂t
r,

as claimed. �
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