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work. In 1998, Burgess presented a paper called Computer Immunology at the Twelfth 

Systems Administration Conference, the landmark piece of work envisioned a type of 

self-healing computer system comparable to the human immune system (Burgess, 

1998, p. 283). 

In this paper, Burgess scornfully notes the massive amount of time system 

administrators need to spend diagnosing and fixing problems related to management 

of a network of computers and discusses the possibility of autonomous system 

maintenance, whereby faults in a system can be detected and fixed automatically 

without the need for human intervention. This is similar to way that most human 

immune systems can easily dispatch routine problems such as headaches, fatigue  and 

small injuries without the need to be hospitalised for dedicated medical care by a 

health professional. Burgess furthers this analogy by writing that “it is as though all 

of our machines are permanently in hospital”  (Burgess, 1998, p. 283). The system 

Burgess proposed to fix this prevalent problem can be summarised as a network of 

machines in which a “healthy” computer state is defined  and automatically pushed to 

every machine on that network, this state data will then be enforced upon each 

machine to ensure every node in the network is in a healthy, uniform state  (Burgess, 

1998, pp. 283-288). As a direct result of the Computer Immunology paper, a major 

research effort in Oslo University took place with Burgess at the forefront, leadin g to 

the release of CFEngine 2 in March 2002, this new version featured machine learning  

and anomaly detection based on the ideals introduced in the Computer Immunology 

paper (CFEngine, 2014) (Burgess, 2002). Over 20 years later, Burgess’s ideals are 

clearly incorporated as the core principles that modern day automated configuration 

management tools adhere to. Tools created years after the initial CFEngine, like 

Puppet and Chef, are based on the idea that a computer’s state can be defined through 

code and pushed from a central location across multiple machines in an automated 

fashion in order to create a uniform network of computers (PuppetLabs, 2015) (Jacob, 

2012). 

For a whole 12 years, CFEngine ran unopposed in the automated configuration 

management field; finally, in 2005, a competitor emerged when Luke Kanies, an 

active user of CFEngine 2, created a Ruby-based, model-driven automation tool 

known as Puppet (PuppetLabs, 2015). Recalling the origins of Puppet in an interview 

with John Willis and Damon Edwards from DevOps Café in 2010, Kanies revealed 

that, as a system administrator years before creating Puppet, he was frustrated with 
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the fact that research and development in the area of configuration management 

automation was not being paid the at tention it deserved (Kanies, 2010). 

Kanies remembers speaking with several experts in the field about his dissatisfaction 

with the advances, or lack thereof, that CFEngine had made with its virtually 

unopposed reign in the sector. While many agreed with him, he found an unsettling 

prevalent theme among them: an acceptance of the fact that CFEngine had been,  and 

was the only industry standard tool in that area,  and that it did not appear to be 

relinquishing its monopoly at any time in the foreseeable future, as no other 

conceivable alternatives were available. Another motivating factor for Kanies to leave 

his job and create Puppet, was that he felt as though there was an unnecessary gap of 

knowledge between system administrators and developers in terms of configuration 

of servers through code. He believed this gap could be bridged by making 

configuration management code less intimating to developers by creating 

modularised, granular libraries of self-describing code and treating these the same as 

database or application code libraries. Kanies hoped this would help encourage both 

departments to learn how to add their own configuration requirements to their servers 

through code, code that both, development  and operations departments could easily 

understand (Kanies, 2010). 

In 2009, Chef was released by a company called OpsCode, now Chef (Robbins, 2009).  

Like Puppet, Chef is a Ruby-based automated configuration management tool based 

around the core concepts of defining a machines desired state through code  and 

centralised modelling of infrastructure (Chef, 2015). Adam Jacob, one of the original 

creators of Chef, recalls the reasoning behind making the tool in a presentation he 

made at Chef Conf 2012: Jacob was working as an IT infrastructure consultant, 

building networks for start-up companies. Much like Kanies with CFEngine, Jacob 

was an avid user of Puppet in his day-to-day work but was dissatisfied with the 

standard of configuration management tools on the market at the time. He began 

creating Chef to increase efficiency in his company while also abstracting complex 

networks through self-describing code to the point where they would translate well  

enough to be understandable to, and to be re-used for each individual client in his 

company’s customer base (Jacob, 2012) 

Each tool discussed above has more similar than unique aspects, all three were created 

by those tasked with system administration, who were attempting to create a faster  



 
 
 

 

 
41 

  

and more efficient way of automating the configuration of systems, and, in doing so, 

whether deliberately or inadvertently, contributed greatly to the DevOps field by 

creating a means of cross-functional collaboration between developers  and operations, 

which is a defining feature in the DevOps culture (Dyck, 2015). 

With the inception of Puppet in 2005 and Chef in 2009 into the configuration 

management sector, the monopoly once held by CFEngine was no more. The 

widespread, and continuing success of the three tools caused a previously absent 

competitive market to develop around them, this, coupled with the advent of cloud 

computing, prompted research and development in the area to progress at a rapid rate 

(Nelson-Smith, 2013). As with any emerging market, the configuration management 

software niche became flooded with new competitors, each offering different tools, 

examples of such include: Rudder, Ansible, SaltStack and Rex (Rudder, 2015) (Gerla, 

2013) (SaltStack, 2015) (Rex, 2015). 

Arguably, the value of these tools were not seen in their entirety until the advent of 

AWS’s EC2 in 2006 (Dadgar, 2014). Maintaining server health and uniformity 

throughout an expanding and contracting network via automated methods allowed 

early cloud adopters to realise the benefits of tools such as CFEngine, Puppet  and 

Chef by managing the configuration of their servers with unprecedented efficiency,  

and their popularity has grown alongside cloud technologies (Nelson-Smith, 2013). 

Puppet is a prime example of this: in an interview in 2009, Puppetlabs founder Luke 

Kanies stated that Puppet had 1,200 users (Matt Asay , 2009). Less than 5 years later, 

in 2014, TechCrunch reported that Puppet had over 18,000 u sers, a client base 

increase of 300% per annum (Lunden, 2014). Along with this, in November 2015, the 

standard library of resources for Puppet modules had over 4.85 million downloads 

(PuppetLabs, 2015). 

Relatively speaking, the need for several brand new machines to be setup from scratch 

rarely arose until the advent of the disposable cloud instance  (Morris, 2016). The 

introduction of IaaS meant that in-house operation costs went down and IT scalability 

possibilities sharply increased (Nelson-Smith, 2013). The ability to easily create 

large-scale increases to IT infrastructure at the rapid rate AWS was offering was 

revolutionary, but, anyone in a technical operations role could see daunting tasks 

ahead of them. Automated configuration management tools ensured that these tasks 

were not associated with the manual configuration of each individual server, while 
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scripting out the configuration of machines is a massive step forward in terms of 

efficiency and scalability, it did leave a large gap in automation where system 

administrators still needed to manually manage all aspects of the higher level 

infrastructure components, such as those associated with virtual machines and 

networks, including but not limited to:  

 Virtual private networks 

 Subnets 

 IP allocation for machines 

 Storage assignment for machines 

 Access control lists 

Along with all of this, a manual log of changes to networks  and VMs would need to 

be kept, typically for disaster recovery and rollback reasons. If an adopting 

organisation is not satisfied with their experience with one CSP, they may choose to 

switch providers or revert back to their original infrastructure setup; to do this, they 

would have to spend a vast amount of time and resources documenting every aspect 

of their networks before they could migrate them to a different datacentre. This was 

the scenario until very recently when tools were created to manage these lower level 

infrastructure components, one such tool is Terraform. Terraform was released in 

2014, it was written by Mitchell Hashimoto of Hashicorp with the intention solving 

the problems described above while granting a means of documenting  and source 

controlling the configuration of entire networks through code (Hashimoto, 2015). 

Terraform aims to create a software-managed datacentre, that is, a virtualised network 

of computers, the components of which are abstracted into a libraries of execu table 

code similar to any lower level configurations of which are defined through code  

(Dadgar, 2014). 

The evolution of the configuration management tool since its inception has taken a 

steady path towards encompassing every aspect of IT infrastructure, from the most 

basic software configuration change to creating entire networks comprised of 

virtualised hardware. A recurring theme throughout this history has been the aim to 

improve the storing of infrastructure configuration through abstract libraries of self-

describing code that both developers and operation engineers can understand, manage  
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and contribute to. The evolution of configuration management code to IaC has led to 

a convergence of the two terms, with IaC being the more popularly used term.  

2.3.1 Infrastructure as Code Benefits  

As discussed above, the benefits of implementing IaC are numerous. As of yet, in this 

thesis, none of these claims have been backed up by concrete statistics, this section 

aims to verify these claims. In January 2015, Microsoft commissioned Forrester, an 

independent research based consulting firm, to determine whether or not 

implementing IaC technologies and principles enhances the speed of software delivery 

from development to production without compromising their defined processes  and 

security (Forrester, 2015). 

Efficiency in the environment lifecycle, including creation, configuration  and 

destroying of environments has been proposed as a benefit from implemen ting IaC, 

plainly because it removes the bulk of human error by providing a means of an 

automated and repeatable execution process for operations which were previously 

manual. To cover every single one of these operations is beyond the scope of this 

thesis, but, a short list from the authors experience as an environment manager 

follows: 

 Configuring server hardware specifications. 

 Installing/configuring operating systems. 

 Installing/configuring applications. 

 Applying correct patches to installed applications. 

 Adding and removing machines to and from the correct domain. 

Repeating all of the above operations on a day-to-day basis can be cumbersome for 

any system administrator, and delays can occur in the application lifecycle due to 

human error in the environment configuration process which may require a great deal 

of troubleshooting to identify. For example, a new environment has been created to 

test a new feature, during the development phase, this feature branch has been 

deployed to the new environment and is throwing errors in several places where it 

was previously working. Several software engineers are debugging through the code 
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they added in order to diagnose the problem. After many hours it is found that the 

operating system installed on the environment i s missing several patches required by 

the new feature, or, that the server is running an outdated version of a database engine, 

or, that a disk drive is missing, or, that certain directories were not set up as they 

should have been. Regardless of the exact  culprit, the cause here is due to one or many 

mistakes in manual configuration that an operations engineer will have to take time 

out of their day to fix. This is a purely hypothetical situation, but, instances of delays 

directly related to mistakes made in the manual configuration of environments have 

been widely reported. Forrester surveyed 300 IT professionals involved with the build  

and release of software and asked them: 

“Where in the application release life cycle do you have the greatest friction?”  

Friction, in this context, relates to errors, misconfigurations or conflicts which 

directly cause delays. The majority of respondents stated that the provisioning  and 

configuration of infrastructure is the 2 nd highest area of friction, followed closely by 

the provisioning and configuration of applications (Forrester, 2015). It should not be 

acceptable that the misconfiguration of environments results in second  and third 

highest areas of delays, these are the bottlenecks that IaC was designed to eliminate. 

Forrester surveyed a mix of 150 development  and operations engineers from different 

companies that had already adopted IaC frameworks and asked them the following 

question: 

“What benefits have you achieved from utilising infrastructure as code?” 

It should be noted that respondents were allowed to choose one or many benefits in 

order to answer this question, results pertinent to this area have been plotted in Figure 

7. It can be surmised that the correct implementation of IaC can potentially provide 

organisations with greater efficiency in the overall environment lifecycle.  
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Figure 7: Reported benefits of IaC 

 

Along with greater efficiency, comes repeatability, in the context of IaC, repeatability 

infers simple scalability. In the section above, the scenario where a single server 

needed to be manually setup was constructed. If, instead of a single server, multiple 

servers needed to be setup manually, then the situation changes greatly. The 

probability of human error causing delays in the initial setup increases relative to the 

number of servers to setup. People inevitably make mistakes when performing 

repetitive and mundane tasks, just like the calculator removes human error when 

performing mathematical calculations, IaC removes human error when provisioning 

and configuring servers. The ability to programmatically declare the desired state of 

a server once and apply it in an automated fashion to an array of servers allows 

organisations to scale rapidly. In a case study by Puppetlabs, Ben Hainline, a 

production operations engineer at Infusionsoft, was interviewed  and queried on 

Infusionsoft’s experience with the configuration management tool. Hainline conveyed 

that the repeatable nature of Puppet allowed Infusionsoft to double the size of its 

infrastructure without hiring extra system administrators; Hainline is also quoted as 

saying “one person can manage 200 servers with Puppet”  (PuppetLabs, 2015). 

Another benefit of implementing IaC is the potential for resource saving. As 

previously mentioned, every aspect of environment creation that was once manual can 

now be scripted through higher level tools, such as Terraform, for virtual machine 

provisioning and network integration, while lower level configuration management 

tools, such as CFEngine, Puppet and Chef, handle the internal configuration of the 

virtual machine itself. Therefore, if a new environment needs to be setup, operations 

engineers need not spend hours or days carrying out manual tasks, they simply need 

to specify their requirements through code, execute said code,  and carry on with their 
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other work. This type of workflow dramatically cuts costs associated with 

environment creation; when infrastructure provisioning and configuration tasks take 

less staff and fewer hours to complete, the organisation saves money. Mozilla’s 

DevOps department uses Terraform to provision and maintain its IT infrastructure and 

claims that the use of IaC allows for an environment to be fully setup in a single 

working day, when they compared their pre-Terraform environment creation 

workflow to their current setup, Mozilla estimated that they save up to 500 operations 

staff hours per year (Hashicorp, 2015). It can be concluded that the benefits of 

adopting IaC have proven to be exhaustive (Hashicorp, 2015) (PuppetLabs, 2015) 

(Forrester, 2015). 

2.3.2 Infrastructure as Code Risks 

IaC is not without its risks and potential pitfalls, the benefits are difficult to overstate 

but can only be achieved when IaC is implemented correctly through changing how 

the adopting organisation treats IT infrastructure by educating  and fostering close 

collaboration between operations and software engineers.  

Organisations that have never utilised IaC and are planning to adopt it may encounter 

problems; nearly a third of organisations in this situation that were surveyed by 

Forrestor stated that they feel their staff lack the expertise to implement IaC 

effectively (Forrester, 2015). Taking this into account, new staff may need to be hired 

or existing staff may need to undergo intensive training and possibly move to different 

roles in order to create and maintain IaC for organisations that have no previous 

history in the area. Questions pertaining to the skillset required  and actual 

responsibilities of these new or retrained staff then arise. Will these new or retrained 

staff be operations based with development knowledge, vice -versa, or will an entire 

new team, dedicated to IaC need to be created? The bulk of cited problems with IaC 

relate to its adoption because it is not a traditional paradigm in the IT field, rather it 

is an interdepartmental technology that requires a great deal of effort to adopt  and 

utilise to reap its benefits. 

Monetary investment and staff training are naturally required when adopting any type 

of new technology, but adoption of IaC is not as simple as a new tool that one person 

or one department will use, it is of paramount importance that both development  and 
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operations departments are equally involved in all aspects of IaC. This is because a 

wide variety of interdepartmental problems can stem from an incorrect adoption of 

IaC and associated principles. Forrestor surveyed 150 IT professionals already 

utilising IaC and found that the conflict between development  and operations 

department preference for specific tools  and languages is the most difficult area when 

adopting IaC (Forrester, 2015). It is true that development and operations play two 

completely different roles in most organisations and forcing them to integrate and 

collaborate will inevitably cause conflicts of interest, especially if the benefits of IaC 

are not realised by everyone involved.  

2.4 Infrastructure as Code and Infrastructure as a Service 

The intersection of IaC and IaaS should be clear to any reader at this point, the two 

are complimenting technologies and have evolved to co-exist with one another. A 

point that should be considered here is that without the affordable scalability potential 

offered by IaaS that IaC would not have become as popular  and as powerful of a tool 

as it is today, as discussed above, t rends show that IaC usage and progress as a 

technology has increased significantly in the years after the release of EC2. It is cited 

that IaC is the natural path of progression for IT management to take in the cloud era, 

Morris is one such author, remarking that: 

"The Infrastructure as Code approach is essential for managing cloud 

infrastructure of any real scale or complexity”  (Morris, 2016). 

Morris outlines challenges in managing the overwhelming amount of affordable 

infrastructure offered by the cloud, the most relevant to this paper are:  

1. Server Sprawl 

The ability to create new servers on-demand with little cost overhead can lead to 

IT teams being unable to manually manage them properly. Server sprawl can lead 

to configuration drift. 

2. Configuration Drift 

When new servers are created, the initial configuration may be consistent at the 

time, but over time, new systems and updates are rolled out, but the existing 
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servers are not updated. This leaves the old servers outdated in terms of software 

updates and essential configuration, and they are said to be in a state of 

configuration drift, which can lead to snowflake servers.  

3. Snowflake Servers 

When a server is different from all others but the difference cannot be replicated, 

a change has taken place on this server that causes it to either work for some 

unknown reason (Morris, 2016). 

The challenges outlined above all stem from the element of human error, that is, the 

reliance on manually provisioning and configuring systems. Morris later concludes 

that the adoption of IaC technologies can be a solution to all of the above if 

implemented correctly through automated, standalone processes that require little to 

no human intervention (Morris, 2016). 

The case study section of this body of work relies heavily on IaC tools in order to 

automate the migration of old, and creation of new environments in the cloud. The 

process to automate the above is based on the princip les of effective use of IaC 

outlined by Burgess and later by Morris (Burgess, 1998, p. 283) (Morris, 2016).  

2.5 Infrastructure as a Service Migration 

Cloud migration has been defined as the deployment of an organisation’s digital 

assets, services, IT resources or applications to the cloud (Pahl, et al., 2013). Security 

issues involved with the migration of sensitive data from non-cloud infrastructure to 

IaaS have been covered extensively in existing literature  (Khan & Al-Yasiri, 2015) 

(Vu & Asal, 2012) (Manvi & Krishna Shyam, 2014). Another cited issue in the field 

is the process of the migration of non-cloud infrastructure to the IaaS platform, in 

particular, its technical aspects and lack of automation (Hwang, et al., 2015). This 

issue is particularly under researched in an industry-based setting. The migration 

process itself requires careful planning and typically involve custom ad-hoc execution 

plans based on client requirements, as the ultimate solution will inevitably vary from 

one client to another (Pahl, et al., 2013). A search of IEEE Digital Xplore online 

library revealed that there have been four generalizable frameworks proposed to 
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handle the migration of non-cloud infrastructure to IaaS, what follows is an overview 

of these frameworks, outlining the overall purpose and limitations of each. 

The Migration Assessment Tool (MAT) presented by Mateescu, et al. is an online web 

application that provides organisations with a detailed assessment of their non -cloud 

infrastructure and determines what kind of IaaS solution would best suit their needs  

(Mateescu, et al., 2014). The MAT architecture consists of a presentation layer which 

handles user interaction, a business layer which creates  and updates objects based on 

the users input and a data layer which contains objects in a database that MAT 

references and compares to the users input. All of the above components interoperate 

with one another in order to take an organisation’s existing, non -cloud infrastructure 

as an input, map out the infrastructure within the MAT database  and compute the best 

possible cloud-based solution and for the client. While this framework does pertain 

to the field of migration of existing non-cloud infrastructure to IaaS, it covers only 

pre-migration phase activities, it does not address the technical complexity aspects 

involved in carrying out such a migration or provide an automated, repeatable process 

for the migration itself. 

Khan and Al-Yasiri have proposed a cloud migration framework for SMEs, this 

framework is based off the general cloud adoption challenges  and solutions obtained 

from 72 interviews the researchers held as part of their study, interviewees range from 

representatives from SMEs, representatives from CSPs and developers who specialise 

in cloud technologies (Khan & Al-Yasiri, 2015). Khan and Al-Yasiri’s framework 

aims to be generalizable to all service models of cloud computing and deals with all 

phases involved in the migration process, it’s broad aim is to provide a stepwise guide 

for SMEs to follow for their cloud migration project  (Khan & Al-Yasiri, 2015). This 

framework is broken down into the following three stages:  

1. Cloud Requirement Stage (CRS) 

This initial stage involves the assessment of client requirements regarding what 

services are to be migrated to what platform, knowledge applied in this stage is 

based on CSP advice and market studies. 

2. Cloud Preparation Stage (CPS) 
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This middle stage is comprised of a comprehensive analysis of the adoption plan 

obtained in the CRS, this stage involves risk assessment regrading regulatory 

compliance, potential security issues and data classification. 

3. Cloud Migration Stage (CMS) 

This final stage outlines the migration and testing of live systems to the selected 

cloud platform 

This framework is centred on industry-based, real-world requirements. It presents a 

guide for SMEs to decide what they can migrate,  and the risks involved in doing so, 

there is only a small section covering the actual process of migration. As the 

framework encompasses all service models of cloud computing,  and all service 

models are inherently different from one another, the migration process outlined in 

this paper does not cover any specific details on the process and technical details of 

how the migration of existing non-cloud infrastructure can be achieved. 

Sabiri et al. present a framework based on the Architecture Driven Modernization 

(ADM) paradigm, the researchers describe a framework where  legacy systems are 

modernized to best suit the cloud platform (Sabiri, et al., 2015). The architecture of 

this framework is comprised of a business layer which processes user requests  and 

implements business logic and a data layer which stores all data for the application 

(Sabiri, et al., 2015). This framework involves the building of a Platform Specific 

Model (PSM) of the existing system to migrate  and a Platform Independent Model 

(PIM) which is used to transform the PSM.  The overall aim of this framework is to 

modify the existing system so that the architecture of the system fosters portability to 

a range of different platforms. This is achieved through a three step process:  

1. Reverse Engineering 

This first stage is comprised of the analysis of the source code of the legacy system 

in order to discover components, relationships  and dependencies within the 

business logic, data layer and infrastructure layer of the system. From this 

analysis, a PSM representation of the system is derived, which is then transformed 

via the PIM transformation rules. 

2. Transformation Upgrade 
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This second stage involves the optional addition of functionalities to the PIM 

outputted in the Reverse Engineering stage.  

3. Forward Engineering 

This final stage is comprised of the transformation of the PIM back to a PSM, the 

final output of this stage is the generation of the codebase for the new PSM (Sabiri, 

et al., 2015). 

This framework proposes a model-based approach for the analysis and modernisation 

of a legacy system so that it can function on a cloud -based platform. This framework 

does not deal with the cloud migration process in any capacity, nor does it address 

the challenge of automation or implementation complexity involved the migration 

process. 

At the time of writing, the CMO framework proposed by Hwang et al. is possibly the 

most pertinent piece in literature regarding the automated migration of non -cloud 

infrastructure to the IaaS platform (Hwang, et al., 2015). In their paper, Hwang, et al. 

describe the end-to-end process of cloud migration in its entirety, encompassing pre-

migration, migration and post-migration phases; they also provide a semi-automated 

approach to the live migration of non-cloud infrastructure to IBM’s Softlayer IaaS 

offering (Hwang, et al., 2015). The migration itself is performed by a three step 

process, all of which is orchestrated by IBM’s Business Process Management (BPM) 

software: 

1. The Provision Stage 

This first stage is almost completely automated, it comprises the provisioning of 

the gateway, virtual network and VMs in Softlayer which match the non-cloud 

infrastructure chosen to migrate. After these resources are provisioned, a Java -

based application configures them to behave in the same way their non -cloud 

equivalents do. 

2. The Network Setup Stage 

This stage involves the manual creation of a WAN connecting the non -cloud 

datacentre with the virtual cloud-based network created in The Provisioning Stage.  

3. The Migration Stage 
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The final stage in the process entails the live migration of the VMs themselves, 

this is achieved by utilising third party migration tools such as VMWare Site 

Recovery Manager, vSphere Replication and VMWare Converter, all which CMO 

supports varying levels of automation for  (Hwang, et al., 2015). 

The CMO effectively tackles the issues of migration complexity and lack of 

automation in the migration process outlined by Mateescu et al.  and Manvi and 

Krishna Shyam respectively, and it does so with great efficiency (Mateescu, et al., 

2014) (Manvi & Krishna Shyam, 2014). In experimental results obtained from the 

CMO under laboratory settings, the time taken to migrate a small datacentre is 44 

hours, whereas, the time taken to migrate a single VM with 200GB of disk attached 

is just over three hours (Hwang, et al., 2015). However, the CMO is specific to IBM’s 

Softlayer as the target IaaS platform, and does not take into account other CSPs, 

therefore the issue of vendor lock-in is prevalent here (Hwang, et al., 2015). The live 

migration approach may be applicable for mission critical systems that require this 

type of migration with as little down-time incurred as possible, but live migration 

capability of CMO means that infrastructure is migrated to the cloud as-is. Using a 

live migration for legacy data centres containing a large amount of test environments 

where the issues of configuration drift, snowflake servers  and server sprawl have 

already occurred will not solve this issues, rather, it will move the problems to a 

platform where the client is charged more for not solving them (Morris, 2016). The 

CMO has yet to be tested outside of a laboratory setting, therefore it lacks the validity 

of having been used in an industry-based setting (Hwang, et al., 2015).  

The frameworks cited above all deal with various phases and activities involved in 

the migration of non-cloud infrastructure to the IaaS platform, for the purpose of 

clarity, the features of these frameworks have been summarised and plotted out in  

Table 4 and Table 5. Table 4 shows the specific phases each framework addresses; 

whereas, Table 5 shows the limitations and features of each framework. 

Framework Pre-Migration Migration 

MAT Yes No 

Khan and Al-Yasiri Yes No 

Sabiri et al. Yes No 

CMO Yes Yes 

Table 4: Existing Migration Frameworks Phase Comparison 
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Framework Vendor 

Lock-in 

Handles 

Migration 

Complexity 

Automated 

Migration  

Industry 

Tested 

MAT No No No No 

Khan and Al-Yasiri No No No No 

Sabiri et al. No No No No 

CMO Yes Yes Yes No 

Table 5: Existing Migration Frameworks Features and Limitations Comparison 

The MAT and the frameworks proposed by Sabiri et al. and Khan and Al-Yasiri all 

address the pre-migration phases of assessment and planning. They are all free from 

the issue of vendor lock-in as they are cloud agnostic in their methods. However, they 

offer no form of automated migration, they do not deal with the technical complexity 

of performing such a migration and they have never been tested in an industry setting.  

To the author’s knowledge, the CMO is the only available framework that handles an 

end-to-end migration scenario, encapsulating the assessment  and planning activities 

in the pre-migration phase alongside the technical process of the migration of non -

cloud infrastructure to the public cloud. The CMO offers a semi -automated approach 

to the migration process but it is specific to IBM’s Softlayer IaaS platform and has 

not been tested in an industry setting (Hwang, et al., 2015). 

2.6 Conclusion 

It is clear from reading the above that cloud computing is the most recent product of 

several decades of IT evolution from relatively simple  beginnings in the 1950s. As a 

technology, the modern form of cloud computing is highly disruptive,  and is rapidly 

changing the world of IT. 

This is especially true for the IaaS model which recently outperformed its on -premises 

equivalent in terms of workloads, as mentioned above. The market is in a state of 

transition as organisations with IT infrastructure flock to major CSPs to take 

advantage of the many proposed benefits of adopting leased infrastructure.  

The risks of adopting the IaaS approach are sti ll widely controversial, with the ever 

emerging media reports of compromised cloud-based data and data centre outages 

causing havoc to organisations. It is the opinion of the author that human beings 
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mistrust change, and a change as dramatic as leasing out IT infrastructure through the 

Internet is bound to be met with scepticism, intense scrutiny and bias for several years 

after reaching mainstream popularity. Organisations wary of IaaS should be made 

aware that major CSPs aim to offer the most secure service possible, constantly 

striving to win the most stringent security awards available. The six mentioned in this 

chapter were the most recommended to have for those seeking secure 3 rd party 

infrastructure, but they are six of numerous accreditations  and awards that most major 

CSPs hold. IT security should be a high priority for any sized organisation with IT 

infrastructure, but most organisations security standards do not come close to 

matching that of industry giants such as Microsoft, Google or Amazon, eac h of which 

have years of experience in managing large scale data centres in a highly secure 

manner. Natural disasters occur, as does human error, as do power outages, the effects 

of each of these can materialise in any data centre, be it a small, on -premises server 

room with a single rack or a huge CSP data centre.  

The benefits of adopting IaaS are numerous, among them are the elimination of cost 

overheads associated with procuring, housing and maintaining physical servers 

alongside the ability to scale at will to virtually unlimited capacity or rapidly 

downsize without incurring significant cost associated with decommissioning of 

physical machinery. Although the ability to scale at will with little restriction raises 

problems of its own, with configuration drift, non-uniformity of environments and 

undocumented changes to infrastructure and server configuration among the top 

offenders (Morris, 2016). It is argued by many that the solution to these problems 

come in the form of IaC (Dadgar, 2014) (Forrester, 2015) (Morris, 2016) (Nelson-

Smith, 2013). The relatively new idea that entire networks, including the granular 

configuration of individual servers can be scripted out, source controlled  and 

deployed in a repeatable manner to overcome the issues of maintaining the plethora 

of IT infrastructure available as a service through cloud computing.  

New organisations have the choice to either create their entire IT systems native to 

the cloud or build their own data centre, however, prior to the launch of AWS’s EC2 

in 2006, the option to build cloud-native IT systems was not available and the de facto 

standard was to build a datacentre using physical servers (Barr, 2006). For 

organisations with IT infrastructure pre-dating 2006, the option of migrating the cloud 

is available, but the process of doing made extremely difficult by the fact that each 

organisation has its own specific migration requirements  and the solution chosen for 
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migration is typically custom built for the each individual organisation (Pahl, et al., 

2013). There are frameworks such as the MAT and the frameworks proposed by Sabiri 

et al. and Khan and Al-Yasiri which aide organisations in the planning and assessment 

phases of their cloud migration projects, but these frameworks do not handle the 

technical complexity of performing such a migration, nor do they  offer any form of 

automated and repeatable process for the migration of large sets of testing 

environments (Mateescu, et al., 2014) (Sabiri, et al., 2015) (Khan & Al-Yasiri, 2015). 

CMO presented by Hwang, et al. does address the aforementioned issues of migration 

complexity and automation in the migration process (Hwang, et al., 2015). This 

framework does offer an automated and repeatable process, but it is locked to IBM’s 

Softlayer IaaS platform, has not yet been tested outside of laboratory conditions  and 

does not solve the issues of configuration drift, snowflake servers or server sprawl  

(Hwang, et al., 2015) (Morris, 2016). From analysing existing literature in the area, 

the conclusion can be drawn that there currently exists no automated framework that 

allows for the migration of non-cloud infrastructure to the IaaS platform that has been 

tested in an industry-based setting and deals with the issues outlined by Morris  

(Morris, 2016). In fact, at the time of writing, the only available industry-based paper 

in the IEEE Digital Xplore Library on the migrat ion of existing, non-cloud 

infrastructure to the IaaS platform is Khajeh-Hosseini, et al., however, no migration 

was carried out as part of this study  (Khajeh-Hosseini, et al., 2010) . 
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Chapter 3. Design and  Implementation 

This chapter provides context regarding the architectural and design and 

implementation involved in this body of work. This chapter starts with a brief outline 

of the case study carried out in the target organisation. This is followed by detailed 

sections pertaining to the architecture and specific technologies used in the 

implementation of an automated framework of interlinked IaC and configuration 

management scripts. This is followed by a use case of the framework which provides 

a clear context to its preceding sections and a knowledge base of the sequence of 

technical processes involved in the running of automated framework. This chapter 

ends with a section on the experimental use of the framework which allowed the case 

study organisation to migrate their existing colocation based IT environment 

infrastructure to AWS’s IaaS platform  and create new IT environments on AWS’s 

IaaS platform. 

3.1 Case Study 

The case study took place over the course of a 5 month period and involved the 

placement of the researcher within the target SME. The overall purpose of the case 

study was the gathering of functional and non-functional requirements for the 

automated framework in the context of the case study organisation. The case study 

also shaped the creation of a detailed project plan for the automated migration of the 

case study organisations non-cloud infrastructure to the AWS IaaS platform.  The 

above was done through a phased process consisting of two distinct phases, both of 

which are outlined below, followed by a detailed description of  each phase throughout 

the 5 month period: 

1. Exploratory Phase 

2. Project Planning Phase 
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3.1.1 Exploratory Phase 

This phase began on the 1st of November 2015 and ended on the 22nd of January 2016. 

The purpose of this phase was to gather client requirements, which were then used to 

construct the architectural design of the framework. In order to achieve this, a detailed 

analysis of the organisation’s traditional manual environment creation process was 

carried out, with a focus on the tasks performed, alongside the time and effort 

overheads imposed by carrying out each task. By engaging with staff belonging to the 

organisation, the researcher built a base of knowledge around the manual in-house 

environment creation process the organisation followed to create their environments  

and also identified three key participants in the organisations manual environment 

creation process, each working within an individual  and unconnected technical 

department in the organisation.  

The researcher conducted semi-structured interviews with these three staff members. 

These interviews revealed an in-depth set of tasks that each participant must carry out 

before handing the environment over to the next participant. From the se interviews, 

the researcher grouped each task that takes place in chronological order during the 

entire manual environment creation process and abstracted them into the following 

six high-level groups: 

1. Provisioning of the new infrastructure. 

This task comprises the creation of a new virtual machine from an existing virtual 

machine. Included in this task are IP address, compute power and storage 

allocation. This task is largely manual and is performed by a member of the 

infrastructure department. 

2. Documentation of the new infrastructure. 

Documenting the specifications, location in the network and name of the new 

environment is done by amending a Visio diagram with the above information. 

This diagram is stored in a shared location that relevant employees within the 

organisation have access to. This task is completely manual and is performed by 

the infrastructure department.  

3. Performing Active Directory domain operations.  
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This task involves two steps, the first is carrying out a Sysprep on the new 

machine. Sysprep is a Windows specific generalisation tool which is used when 

one Windows computer is cloned from another Windows computer, it remove all 

traces of a previous machine from the cloned machine (Microsoft, 2017). The 

second step in this task is to rename the new machine to a meaningful name that 

falls in line with the organisations server naming conventions. The third and final 

step is to add the machine to the correct organisational unit in the domain, which 

essentially allows the new server to become part of the organisations network of 

computers (Desmond, 2008). 

4. Creating the Domain Name System (DNS) entries for the environment. 

There are two separate kinds of DNS entries to be setup in this task. The first are 

simple Active Directory DNS entries which allow users connected to the 

organisations internal network to connect directly to the new server using the A 

and CNAME entries created in this task. The second type of DNS entries requi red 

for creation at this stage are the external DNS entries which allow users outside 

of the organisations network to connect to the sites on the new server via a web 

browser. These external DNS entries are not hosted within the organisation, rather, 

they are hosted by a third party DNS provider. This task is completely manual and 

is performed by the infrastructure department.  

5. Setting up the environment specific configuration on server.  

This task involves the modification of configuration files on the new server so 

that the old environment values are removed from them and the new environment 

values are inserted into them. Specific examples of these configuration files 

include system files such as the HOSTS file and machine.config file, along with 

application and website specific configuration files such as web.config and 

app.config files. Internet Information Services configuration files also need to be 

modified in this step. This step is completely manual and is performed by the 

release management department. 

6. Deploying the organisation’s  Application and Database (A&D) codebase to the 

new server. 

The final step in the process is the deployment of the latest release of the 

organisations A&D codebase to the new server. There is a large amount of code 
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from a range of different branches that is required to be deployed at this step , 

specifics on the size and number of branches that are deployed are discussed in 

section 4.1.3 of this thesis. This step is largely automated by existing deployment 

procedures, however, manual input is required in multiple places, and a significant 

amount of manual work is involved in monitoring the deployments and 

troubleshooting errors if they occur. This step is performed by the release 

management department. 

These processes are heavily referenced in the sections that follow and play an 

important role in the architecture of the working system. The results of these 

interviews also formed the benchmark for the manual environment creation timings 

that became a key comparative variable in later sections of this document, the full 

transcripts of said interviews can be found in Appendices A, B and C. Once the 

researcher had a comprehensive understanding of the organisation’s manual in-house 

environment creation process, this phase ended and was succeeded by the Project 

Planning Phase. 

3.1.2 Project Planning Phase 

This phase took place between the 25 th of January 2016 and the 1st of April 2016. The 

scope of the migration project for the case study organisation was created in this 

phase. The initial project scope entailed a complete migration of the organisation’s 

testing, staging and production environments to AWS’s IaaS platform . As the project 

was being planned, the scope began to narrow due to two impediments, one major 

impediment and one less severe, both will be discussed in this section. The researcher 

believes these impediments and their consequence merit discussion in this section as 

both had a direct effect on the design and implementation of the framework and should 

give the reader an understanding of how industry requirements  and academic research 

are not always aligned with one another. 

The first impediment pertains to security which has been detailed by Sadiku, et al. as 

the greatest challenge when adopting public cloud infrastructure  (Sadiku, et al., 

2014). This security issue pertains to the compliance issues with data belonging to 

the clients of the case study organisation. One client in particular has a specific 

agreement with the case study organisation that they reserve the right to inspect the 
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physical machinery that their sensitive data resides  on, inclusive in this clause is any 

data which relates to personally identifiable information. The implication was that, 

the servers that host the front-end applications that the clients interact with and enter 

data into, along with the servers that host the databases which contain the client 

interaction information and associated data must be geographically locatable  and 

accessible if that client wishes to inspect it. In the case study organisation, this is 

typically done via the client sending out an IT engineer on their behalf to inspect the 

machine for physical faults and ensure it has not been tampered with in any way. The 

client has an agreement with the organisation that no specific reason needs to be given 

for this kind of inspection to be warranted. 

This was an issue as it was found that Amazon follow a shared responsibility model, 

visualised in Figure 8, in which the client who is leasing infrastructure is responsible 

for all aspects of the data they host on that infrastructure, who can access it  and how 

it’s accessed, whereas AWS assumes the responsibility for securing the lower level 

layers, starting from the virtualisation layer of the physical machines all the way down 

to the security of the facilities in which the machines reside  (Amazon, 2016). 

 

Figure 8: AWS Shared Responsibility Model 
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The responsibility of the security of physical machines is out of the control of AWS’s 

clients, therefore, AWS do not allow any of their clients to physically inspect the 

computing machinery in their data centres, nor do they disclose the specific location 

of their machines or data centre buildings to their clients  (Amazon, 2016).  

As a result of this, the project scope had to be narrowed down to exclude all 

production and 3rd party testing environments, as these environments inherently 

contain sensitive client information. Only data necessary for functional testing of the 

organisation’s systems that is not linked to any real person was allowed to be hosted 

on AWS infrastructure as part of this project. The project moved ahead regardless of 

this, encapsulating only internal test environments tha t contain dummy data required 

for development and testing. 

At the project outset, eight existing internal testing environments needed to be 

migrated to the public cloud in a very small amount of time in order to minimize 

downtime for staff who would be act ively using these environments. Another 

requirement that was agreed upon was the building of new testing environments native 

to the cloud. A system needed to be created that was versatile enough to handle both 

of these scenarios without differentiation. 

It was planned to migrate the existing test environments directly to AWS, meaning 

they were going to be exported as machine images from the colocation centre  and 

directly imported as AMIs across the Internet to the AWS data centre. AMIs are stored 

in S3, and there is no transfer cost involved in incoming data , therefore, this approach 

was seen as a straightforward and economically feasible one (Amazon, 2016). 

Following this approach, each individual environment would need to follow a 

relatively simple migration process, outlined below:  

1. Take server off the organisation’s domain. 

2. Sysprep and shutdown instance. 

3. Export server as a machine image. 

4. Import machine image to AWS as an AMI. 

5. Launch as an EC2 instance. 

6. Add instance to the organisation’s domain . 
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7. Modify all DNS entries that referenced the old machine to point to new instance 

in the cloud. 

However, upon further scrutiny, problems with this approach quickly began to 

emerge. The cost overhead associated with duplicating each of individual 

environment’s disk drives in AWS  is one such factor. For instance, if eight 

environments with 250GB of disk space were migrated following this approach, then 

there would be eight imported AMIs taking up a combined total of over 2TB of disk 

space and eight instances with separate storage also taking up a combined total of 

over 2TB of disk space, essentially this would be doubling the amount of provisioned 

S3 storage. Along with this, applying patches, installing updates and new applications 

to each separate AMI and its associated instance also becomes a problem as 

maintenance of this type of system is potentially very inefficient  and lacks scalability 

if more environments were to be migrated. This type of system also neglects new 

environments that are created native to the cloud, so an entirely different system 

would need to be designed for creating these new environments in AWS.  Therefore, 

need for a single AMI that has the minimum amount configured on it (i.e. specific 

operating system, disk drives, etc.) arose. The environment specific configurations 

were to be defined through IaC in the form of Terraform and configuration 

management in the form of Puppet. Any updates that needed to be installed can be 

done through either configuration management code on the instances themselves or 

installed on the single AMI that the process would build instances from.  

The concept of building new machines in the cloud brought about its own challenges,  

and led to the second impediment, which pertains to a section of the environment 

creation process that could not be automated through code, namely the setting up of 

the external DNS entries for the websites that are hosted on the environments. In the 

case study organisation, existing networking layer components such as internal IP 

addresses, internal and external DNS entries can all be reused for machines that were 

to be rebuilt in the cloud. For new machines being built in the cloud, all of these 

entries needed to be created. It was desired that any infrastructure, including 

networking, created in the cloud could be done through source  controllable IaC. 

However, an issue was recognised early on in the case study that limited the scope of 

the automation. The DNS service provider that the case study organisation was 

subscribed to offered no Application Programming Interface (API) for the creation  

and modification of DNS entries, essentially meaning tha t the DNS provider did not 
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allow for IaC tools to create and manage DNS entries. These external DNS entries 

had to be created manually for any new environments being built in the cloud, which 

became a large gap in the process of automation.  

3.1.3 Functional Requirements 

Based on the above, the following functional requirements the framework were 

derived: 

1. The framework should be capable of rebuilding the case study organisation’s 

existing internal testing environments on an IaaS platform in an automated 

fashion. 

2. The framework should be capable of creating new testing environments belonging 

to the case study organisation on an IaaS platform in an automated fashion.  

3. The framework should be capable of outputting meaningful errors  and terminating 

upon a non-zero exit code of any underlying script. 

3.1.4 Non-Functional Requirements 

The non-functional requirements for the framework are as follows:  

1. The framework should be capable of achieving the functional requirements with  a 

single server image. 

2. The framework should only have a single human operator. 

3. The framework should abstract the underlying processes to the operator in a 

meaningful way for troubleshooting purposes.  

4. The framework should have a single entry point of execution.  

5. The framework should have a single point of monitoring. 







 
 
 

 

 
105 

  

time the researcher or supporting technical staff spent to solve the errors  and restart 

the build chain from its point of failure. The rate of failure of the framework should 

be of interest of any reader, as it shows how automated tasks can be more efficient in 

terms of time and effort, but also may be more unreliable than manually performing  

these tasks in practise. After each run of the framework, execution timin gs, rates of 

error and manual troubleshooting times for each build were extracted  and placed in 

an Excel spreadsheet for later analysis.  Along with the above, the researcher manually 

entered the category of the framework run into the spreadsheet. These cat egories are 

divided into two separate subsets, either Recreation or Creation, depending on the 

environment in question. 

The Recreation timings were taken from execution runs of the framework where an 

existing, in-house machine is being recreated on public cloud infrastructure. The 

Creation timings were taken from execution runs of the framework where a new 

environment is created native to public cloud infrastructure.  As previously mentioned 

in section 3.1.2, the creation of the external DNS entries required for each 

environment to function was not automatable due to the case study organisation’s 

subscription to a DNS provider that did not provide an API for programma tic 

interaction. Therefore, the creation of these external DNS entries was performed 

manually for newly created environments that fall into this subset. This task is not 

applicable to environments in the Recreation subset as these entries were already in 

place for environments that had previously existed in -house. The timings for this task 

were derived from the manual estimates provided by staff in the semi -structured 

interviews and is the same as the timing for external DNS creation in the manual set.  

The volume of data in the Automated set was far larger than that of the Manual set, 

but it was still manageable enough for the researcher to manually parse  and enter this 

set into an Excel spreadsheet for analysis. The automated timings were gathered on a 

per-build basis, meaning that, each build in the chain provided its own raw timing 

data broken down into the following sections:  

1. Provisioning Build 

2. Domain Build 

3. Configuration Build 

4. Deployment Build 
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The Manual timings set had each individual task matched to an approximate time it 

took to complete with no form of categorisation of tasks. Whereas, the automated 

timing set was already categorised as outlined above. Therefore, the researcher 

classified the tasks in the manual timings set to match those from the auto mated timing 

set, factored in the troubleshooting work and external DNS entry creation and created 

the following data groups common to both for comparison:  

1. Provisioning Tasks 

2. Domain Operations 

3. Server Configuration 

4. Deployment of Codebase 

5. Troubleshooting 

6. External DNS Creation 

 Data Analysis  

The timing data for both sets outlined above is relatively simple  and does not contain 

excessive levels of complexity. The Manual set contains a single set of approximated 

timings for each task, these timings were retrieved from semi-structured interviews 

with staff belonging to the case study organisation who previous carried out these  

tasks on a regular basis. The Automated set contains a significantly larger volume of 

data as it was taken from repeated, real-world runs of the automated framework. 

Therefore, following classification, it was necessary to find the most appropriate 

calculation of the average timings for each data group in the automated data set.  

The data for the automated timings did not contain a large amo unt of lower or higher 

extremes, due to the nature of automation itself, the execution times follow a regular 

pattern. Therefore, the researcher calculated the averages of the automated runtimes 

by calculating the mean average of each data group.  There were some manual tasks 

that needed to be performed during the automated process for troubleshooting errors 

when the framework failed, to ensure uniformity in results comparison, the mean 

average was calculated for these timings to find the most appropriate mi dpoint of data. 

The above data groups from the Automated timings data set were compared to the 
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same data groups from the Manual timings data set.  As the timings for each data group 

varied greatly, the researcher calculated the time in minutes per data  group, as some 

tasks from the Automated data set take seconds, where other tasks take hours. 

Similarly, some tasks from the Manual data set have been approximated to take 

minutes to carry out, whereas other tasks from the same set have been cited to take 

several hours. This was necessary for comparative purposes as it is desirable to group 

all data together in a standard, uniform manner.  

4.2.2 Sample Size 

Varying sample sizes are present for each of the above sets, what follows is a 

discussion of the sample sizes from the Manual timings dataset and Automated 

timings dataset along with the Creation and Recreation subsets of the Automated 

timings dataset. 

Data from the Manual timings dataset were extracted from transcripts of the semi -

structured interviews with the case study organisation staff members, these interviews 

were held by the researcher in the Exploratory Phase of the case study. It can be said 

that the sample size for this set is limited to a single sample as the timings for a 

manual environment creation or migration are based on approximations provided by 

various staff members that were previously tasked with carrying out the manual steps 

in the environment creation process. Manual creations or migrations of environments 

theoretically could have taken place to provide a more ample sample size, but this 

was not possible to carry out due to resource constraints  and the practical nature of 

performing industry-based research. In that, the researcher was not in a position to 

request that three technical engineers from within the organisation halt their work to 

manually create several test environments  and detail the time and effort is took to 

perform each task to generate a larger sample size for this dataset . Due to this 

constraint, the sample size and quality of this sample is relatively poor when 

compared with the Automated dataset. 

Data from the Automated dataset were obtained directly from the TeamCity build 

chain execution logs of the framework. These timings are far more precise  and reliable 

than the manual timings set as these timings were captured automatically and in real-

time by TeamCity. In total, 39 execution logs are included in the sample size for this 
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set. Similar to the limitation for the Manual timings set, the sample size for the 

Automated timings set was restricted by the case study organisations requirements. 

Each test environment that was generated via the automated framework was done so 

on-demand as a requirement for the case study organisation’s development or testing 

departments. Once the environment instance has been created at the beginning of the 

framework execution, it immediately incurs a direct cost overhead to the organisation. 

Therefore, the researcher could not execute the framework to generate test 

environments at will in order to increase the sample size for this set, as the cost effect 

of doing so would cause an unfeasible amount of strain on the resources that the 

organisation had dedicated to this project.  

The Automated timings set is broken down into two subsets, Recreation and Creation. 

The Recreation subset consists of timing data retrieved from the execution of the 

framework where an existing, in-house machine is being recreated on public cloud 

infrastructure. A total of 8 execution logs are included in this subset.  The Creation 

subset consists of timing data retrieved from the execution of the framework where a 

new environment is created native to public cloud infrastructure. A total of 31 

execution logs are included in this subset.  

4.2.3 Comparison of Manual and Automated Datasets 

The Manual Timings and Automated Timings datasets are presented and compared in 

this section, by plotting the raw data from each dataset on the same charts, a clear 

comparison of timings from both processes can be seen. In this instance, the 

Automated Timings dataset is a general view of the dataset, it is comprised of the 

combined average means of the Creation and Recreation subsets. 

 Overall Process Comparison  

The most important area of the results are presented here. The comparison of the 

overall environment creation process when performed manually  and when performed 

through the automated framework is shown here.  Figure 23 is by far the most 

simplistic, and possibly the most significant illustration of data in this entire 

document. 
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Figure 23: Data Set Comparison: Automated vs. Manual 

It makes no distinction between tasks, rather, it combines all tasks in both processes 

to display an overall comparison of the automated and manual processes in terms of 

timings for both. 

It can be seen in Figure 23 that the automated process as a whole is 360% faster than 

the manual process. The manual process itself takes 2,250 minutes or 37.5 hours in 

total, whereas, the automated process takes 489 minutes or 8.15 hours. 

 Individual Task Comparison  

Figure 24 demonstrates a more detailed breakdown of this overall process comparison, 

it shows each task and their associated timings in a side-by-side comparison. Figure 

24 provides a more detailed view of the efficacy of the automated framework than  

Figure 23. One can see from Figure 24 that, in the highest performing task the 

framework can handle the Provisioning Tasks 8,092% faster than the manual process, 

even in the lowest performing task, the framework can handle the Deployment of Code 

140% faster than the manual process.  
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Figure 24: Task Comparison: Automated vs. Manual 

 Task Proportion Comparison  

These data sets varied greatly not only in actual timings, but also in terms of 

proportion of time taken to complete various tasks in view of the overall process. 

Figure 25 shows the proportion of time each task took to complete in the manual 

process, whereas, Figure 26 shows the proportion of time each task took to complete 

in the automated process. It is evident from Figure 25 and Figure 26 that the 

operations in the Deployment of Codebase task take the most time to perform 

regardless of the use of public cloud and IaC technologies, in fact, the proportion of 

time this task took to complete in the automated process increased by over 91% when 

compared to the manual process. While it only accounts for a small portion of time in 

both processes, it is worth mentioning that the proportion of time to complete the 

External DNS Creation task increased by over 207% in environments created by the 

automated process. Speculation as to why these increases in proportional time 

occurred is covered in the Discussion chapter of this document. 
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Figure 25: Manual Timings: Breakdown of overall process 

One can also see from Figure 25 and Figure 26 that the proportion of time taken to 

perform the Provisioning Tasks, Domain Operations, Server Configuration  and 

Troubleshooting tasks have all been reduced by a significant factor. Server 

Configuration is the most pertinent area to focus on here as these tasks are the second 

most time consuming to carry out in both the automated and the manual process. These 

tasks take up exactly one third of the total time in the manual process.  

Whereas, in the automated process, Server Configuration tasks only account for 

13.5%. Another interesting metric comparison to note from Figure 25 and Figure 26 

is the discrepancy between the proportions of time spent on the Troubleshooting task. 

In the manual process, the Troubleshooting tasks account for 13.3% of the total 

process time, whereas, in the automated process only 2.4% of the total process time 

is spent on these tasks. 
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Figure 26: Automated Timings: Breakdown of overall process 

 Effort Comparison 

Not only is the automated process several magnitudes faster than the manual 

equivalent, the effort overhead involved is also decreased significantly. The only 

tasks in the automated set that contain any effort overhead are the Troubleshooting 

and External DNS Creation tasks. While it was impossible to automate the External 

DNS Creation task, the framework does allow for a reduction in manual 

troubleshooting time of 4.8 hours per environment, which is a proportional decrease 

in time of 96%. The automated process contains only a fraction of manual work, 

calculated by adding the averages of the Troubleshooting and External DNS Creation 

tasks. The total manual work involved in the manual process is 2,250 minutes or 37.5 

hours, whereas, the total average manual work involved across all runs of the 

automated process is a mere 52 minutes, this comparison reveals a difference between 

the two metrics. In total, the manual process requires over 43 times more manual 

effort than that of the automated process.  
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Figure 34: Storage Capacity Experiment Task Comparison 

Figure 34 shows that the storage allocated to the environment being created by the 

framework can have a dramatic and non-linear effect on the speed of various tasks. 

The main tasks responsible for timing discrepancy in this experiment are the Server 

Configuration and Deployment of Codebase tasks, while a ll other tasks take relatively 

the same amount of time. An unexpected result is the increase in time require for the 

Server Configuration task to complete as the storage allocated to the environment is 

increased. The Low Storage AMI handles this task faster than the Baseline AMI, 

similarly the Baseline AMI handles this task faster than the High Storage AMI. The 

Deployment of Codebase task is the main culprit for the unpredicted skew in timing 

data, taking far longer for the Baseline AMI than the Low Storage  or High Storage 

AMI. Another unanticipated difference to note here is the slight difference in timing 

between the Low Storage and High Storage AMIs. The Low Storage AMI handles this 

task slightly faster than the High Storage AMI.  
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efficiency capabilities that these technologies can provide to an organisation when 

they are implemented correctly. Figure 23 is the best method of visualizing the 

difference in timings between the two processes. It shows that, when the processes 

are compared, the automated process is 360% faster than the manual process. The data 

this figure illustrates is an adequate means for answering the research question inside 

of the context of the organisation the framework was implemented in.  

A valid question arises when examining Figure 23 one pertaining to the 

generalizability of the manual process timings in the context of the wider audience. 

It could be argued that the case study organisation had an extremely inefficient 

environment creation process and the automated timing comparison is intentionally 

providing a false equivalency to bolster the efficacy of the framework. However, the 

survey results presented in section 4.4.4 show that organisations not utilizing IaC 

tools take, on average, relatively the same time to create environments through their 

manual processes. The results of the survey questionnaire carried out as part of this 

study also show that organisations that have implemented IaC tools have a far more 

streamlined environment creation process than that achieved in the case study via the 

automated framework. To further this point, external industry -based surveys detailed 

in sections 2.1.3 and 2.3.1 of the Background and Literature Review chapter also 

present data suggesting that faster access to infrastructure and faster configuration 

workflows are two of the most cited benefits of implementing IaaS and IaC tools 

(RightScale, 2014) (RightScale, 2015) (Forrester, 2015). Therefore, from the above, 

one can conclude that the comparison between the overall manual and automated 

processes is indeed valid, and that similar results could be obtained if the framework 

was to be implemented in an organisation that was not currently utilizing IaC tools or 

IaaS. 

 Review of Individual Task Comparison  Results 

The individual task comparison between the manual and automated processes is 

presented in section 4.2.4.2. Figure 24 visualizes varying discrepancies between the 

timings in the automated and manual processes,  all tasks are faster when run under 

the automated system, but some outrank others by several magnitudes in terms of 

speed. Figure 25 presents the proportion of time taken for each task in the manual 


