

39

work. In 1998, Burgess presented a paper called Computer Immunology at the Twelfth

Systems Administration Conference, the landmark piece of work envisioned a type of

self-healing computer system comparable to the human immune system (Burgess,

1998, p. 283).

In this paper, Burgess scornfully notes the massive amount of time system

administrators need to spend diagnosing and fixing problems related to management

of a network of computers and discusses the possibility of autonomous system

maintenance, whereby faults in a system can be detected and fixed automatically

without the need for human intervention. This is similar to way that most human

immune systems can easily dispatch routine problems such as headaches, fatigue and

small injuries without the need to be hospitalised for dedicated medical care by a

health professional. Burgess furthers this analogy by writing that “it is as though all

of our machines are permanently in hospital” (Burgess, 1998, p. 283). The system

Burgess proposed to fix this prevalent problem can be summarised as a network of

machines in which a “healthy” computer state is defined and automatically pushed to

every machine on that network, this state data will then be enforced upon each

machine to ensure every node in the network is in a healthy, uniform state (Burgess,

1998, pp. 283-288). As a direct result of the Computer Immunology paper, a major

research effort in Oslo University took place with Burgess at the forefront, leadin g to

the release of CFEngine 2 in March 2002, this new version featured machine learning

and anomaly detection based on the ideals introduced in the Computer Immunology

paper (CFEngine, 2014) (Burgess, 2002). Over 20 years later, Burgess’s ideals are

clearly incorporated as the core principles that modern day automated configuration

management tools adhere to. Tools created years after the initial CFEngine, like

Puppet and Chef, are based on the idea that a computer’s state can be defined through

code and pushed from a central location across multiple machines in an automated

fashion in order to create a uniform network of computers (PuppetLabs, 2015) (Jacob,

2012).

For a whole 12 years, CFEngine ran unopposed in the automated configuration

management field; finally, in 2005, a competitor emerged when Luke Kanies, an

active user of CFEngine 2, created a Ruby-based, model-driven automation tool

known as Puppet (PuppetLabs, 2015). Recalling the origins of Puppet in an interview

with John Willis and Damon Edwards from DevOps Café in 2010, Kanies revealed

that, as a system administrator years before creating Puppet, he was frustrated with

40

the fact that research and development in the area of configuration management

automation was not being paid the at tention it deserved (Kanies, 2010).

Kanies remembers speaking with several experts in the field about his dissatisfaction

with the advances, or lack thereof, that CFEngine had made with its virtually

unopposed reign in the sector. While many agreed with him, he found an unsettling

prevalent theme among them: an acceptance of the fact that CFEngine had been, and

was the only industry standard tool in that area, and that it did not appear to be

relinquishing its monopoly at any time in the foreseeable future, as no other

conceivable alternatives were available. Another motivating factor for Kanies to leave

his job and create Puppet, was that he felt as though there was an unnecessary gap of

knowledge between system administrators and developers in terms of configuration

of servers through code. He believed this gap could be bridged by making

configuration management code less intimating to developers by creating

modularised, granular libraries of self-describing code and treating these the same as

database or application code libraries. Kanies hoped this would help encourage both

departments to learn how to add their own configuration requirements to their servers

through code, code that both, development and operations departments could easily

understand (Kanies, 2010).

In 2009, Chef was released by a company called OpsCode, now Chef (Robbins, 2009).

Like Puppet, Chef is a Ruby-based automated configuration management tool based

around the core concepts of defining a machines desired state through code and

centralised modelling of infrastructure (Chef, 2015). Adam Jacob, one of the original

creators of Chef, recalls the reasoning behind making the tool in a presentation he

made at Chef Conf 2012: Jacob was working as an IT infrastructure consultant,

building networks for start-up companies. Much like Kanies with CFEngine, Jacob

was an avid user of Puppet in his day-to-day work but was dissatisfied with the

standard of configuration management tools on the market at the time. He began

creating Chef to increase efficiency in his company while also abstracting complex

networks through self-describing code to the point where they would translate well

enough to be understandable to, and to be re-used for each individual client in his

company’s customer base (Jacob, 2012)

Each tool discussed above has more similar than unique aspects, all three were created

by those tasked with system administration, who were attempting to create a faster

41

and more efficient way of automating the configuration of systems, and, in doing so,

whether deliberately or inadvertently, contributed greatly to the DevOps field by

creating a means of cross-functional collaboration between developers and operations,

which is a defining feature in the DevOps culture (Dyck, 2015).

With the inception of Puppet in 2005 and Chef in 2009 into the configuration

management sector, the monopoly once held by CFEngine was no more. The

widespread, and continuing success of the three tools caused a previously absent

competitive market to develop around them, this, coupled with the advent of cloud

computing, prompted research and development in the area to progress at a rapid rate

(Nelson-Smith, 2013). As with any emerging market, the configuration management

software niche became flooded with new competitors, each offering different tools,

examples of such include: Rudder, Ansible, SaltStack and Rex (Rudder, 2015) (Gerla,

2013) (SaltStack, 2015) (Rex, 2015).

Arguably, the value of these tools were not seen in their entirety until the advent of

AWS’s EC2 in 2006 (Dadgar, 2014). Maintaining server health and uniformity

throughout an expanding and contracting network via automated methods allowed

early cloud adopters to realise the benefits of tools such as CFEngine, Puppet and

Chef by managing the configuration of their servers with unprecedented efficiency,

and their popularity has grown alongside cloud technologies (Nelson-Smith, 2013).

Puppet is a prime example of this: in an interview in 2009, Puppetlabs founder Luke

Kanies stated that Puppet had 1,200 users (Matt Asay , 2009). Less than 5 years later,

in 2014, TechCrunch reported that Puppet had over 18,000 u sers, a client base

increase of 300% per annum (Lunden, 2014). Along with this, in November 2015, the

standard library of resources for Puppet modules had over 4.85 million downloads

(PuppetLabs, 2015).

Relatively speaking, the need for several brand new machines to be setup from scratch

rarely arose until the advent of the disposable cloud instance (Morris, 2016). The

introduction of IaaS meant that in-house operation costs went down and IT scalability

possibilities sharply increased (Nelson-Smith, 2013). The ability to easily create

large-scale increases to IT infrastructure at the rapid rate AWS was offering was

revolutionary, but, anyone in a technical operations role could see daunting tasks

ahead of them. Automated configuration management tools ensured that these tasks

were not associated with the manual configuration of each individual server, while

42

scripting out the configuration of machines is a massive step forward in terms of

efficiency and scalability, it did leave a large gap in automation where system

administrators still needed to manually manage all aspects of the higher level

infrastructure components, such as those associated with virtual machines and

networks, including but not limited to:

 Virtual private networks

 Subnets

 IP allocation for machines

 Storage assignment for machines

 Access control lists

Along with all of this, a manual log of changes to networks and VMs would need to

be kept, typically for disaster recovery and rollback reasons. If an adopting

organisation is not satisfied with their experience with one CSP, they may choose to

switch providers or revert back to their original infrastructure setup; to do this, they

would have to spend a vast amount of time and resources documenting every aspect

of their networks before they could migrate them to a different datacentre. This was

the scenario until very recently when tools were created to manage these lower level

infrastructure components, one such tool is Terraform. Terraform was released in

2014, it was written by Mitchell Hashimoto of Hashicorp with the intention solving

the problems described above while granting a means of documenting and source

controlling the configuration of entire networks through code (Hashimoto, 2015).

Terraform aims to create a software-managed datacentre, that is, a virtualised network

of computers, the components of which are abstracted into a libraries of execu table

code similar to any lower level configurations of which are defined through code

(Dadgar, 2014).

The evolution of the configuration management tool since its inception has taken a

steady path towards encompassing every aspect of IT infrastructure, from the most

basic software configuration change to creating entire networks comprised of

virtualised hardware. A recurring theme throughout this history has been the aim to

improve the storing of infrastructure configuration through abstract libraries of self-

describing code that both developers and operation engineers can understand, manage

43

and contribute to. The evolution of configuration management code to IaC has led to

a convergence of the two terms, with IaC being the more popularly used term.

2.3.1 Infrastructure as Code Benefits

As discussed above, the benefits of implementing IaC are numerous. As of yet, in this

thesis, none of these claims have been backed up by concrete statistics, this section

aims to verify these claims. In January 2015, Microsoft commissioned Forrester, an

independent research based consulting firm, to determine whether or not

implementing IaC technologies and principles enhances the speed of software delivery

from development to production without compromising their defined processes and

security (Forrester, 2015).

Efficiency in the environment lifecycle, including creation, configuration and

destroying of environments has been proposed as a benefit from implemen ting IaC,

plainly because it removes the bulk of human error by providing a means of an

automated and repeatable execution process for operations which were previously

manual. To cover every single one of these operations is beyond the scope of this

thesis, but, a short list from the authors experience as an environment manager

follows:

 Configuring server hardware specifications.

 Installing/configuring operating systems.

 Installing/configuring applications.

 Applying correct patches to installed applications.

 Adding and removing machines to and from the correct domain.

Repeating all of the above operations on a day-to-day basis can be cumbersome for

any system administrator, and delays can occur in the application lifecycle due to

human error in the environment configuration process which may require a great deal

of troubleshooting to identify. For example, a new environment has been created to

test a new feature, during the development phase, this feature branch has been

deployed to the new environment and is throwing errors in several places where it

was previously working. Several software engineers are debugging through the code

44

they added in order to diagnose the problem. After many hours it is found that the

operating system installed on the environment i s missing several patches required by

the new feature, or, that the server is running an outdated version of a database engine,

or, that a disk drive is missing, or, that certain directories were not set up as they

should have been. Regardless of the exact culprit, the cause here is due to one or many

mistakes in manual configuration that an operations engineer will have to take time

out of their day to fix. This is a purely hypothetical situation, but, instances of delays

directly related to mistakes made in the manual configuration of environments have

been widely reported. Forrester surveyed 300 IT professionals involved with the build

and release of software and asked them:

“Where in the application release life cycle do you have the greatest friction?”

Friction, in this context, relates to errors, misconfigurations or conflicts which

directly cause delays. The majority of respondents stated that the provisioning and

configuration of infrastructure is the 2 nd highest area of friction, followed closely by

the provisioning and configuration of applications (Forrester, 2015). It should not be

acceptable that the misconfiguration of environments results in second and third

highest areas of delays, these are the bottlenecks that IaC was designed to eliminate.

Forrester surveyed a mix of 150 development and operations engineers from different

companies that had already adopted IaC frameworks and asked them the following

question:

“What benefits have you achieved from utilising infrastructure as code?”

It should be noted that respondents were allowed to choose one or many benefits in

order to answer this question, results pertinent to this area have been plotted in Figure

7. It can be surmised that the correct implementation of IaC can potentially provide

organisations with greater efficiency in the overall environment lifecycle.

45

Figure 7: Reported benefits of IaC

Along with greater efficiency, comes repeatability, in the context of IaC, repeatability

infers simple scalability. In the section above, the scenario where a single server

needed to be manually setup was constructed. If, instead of a single server, multiple

servers needed to be setup manually, then the situation changes greatly. The

probability of human error causing delays in the initial setup increases relative to the

number of servers to setup. People inevitably make mistakes when performing

repetitive and mundane tasks, just like the calculator removes human error when

performing mathematical calculations, IaC removes human error when provisioning

and configuring servers. The ability to programmatically declare the desired state of

a server once and apply it in an automated fashion to an array of servers allows

organisations to scale rapidly. In a case study by Puppetlabs, Ben Hainline, a

production operations engineer at Infusionsoft, was interviewed and queried on

Infusionsoft’s experience with the configuration management tool. Hainline conveyed

that the repeatable nature of Puppet allowed Infusionsoft to double the size of its

infrastructure without hiring extra system administrators; Hainline is also quoted as

saying “one person can manage 200 servers with Puppet” (PuppetLabs, 2015).

Another benefit of implementing IaC is the potential for resource saving. As

previously mentioned, every aspect of environment creation that was once manual can

now be scripted through higher level tools, such as Terraform, for virtual machine

provisioning and network integration, while lower level configuration management

tools, such as CFEngine, Puppet and Chef, handle the internal configuration of the

virtual machine itself. Therefore, if a new environment needs to be setup, operations

engineers need not spend hours or days carrying out manual tasks, they simply need

to specify their requirements through code, execute said code, and carry on with their

25%

31%

31%

32%

Easier system of creating and destroying
environments

Faster application lifecycles

Fewer configuration errors

Faster configuration workflows

What benefits have you achieved from utilising infrastructure as code?

46

other work. This type of workflow dramatically cuts costs associated with

environment creation; when infrastructure provisioning and configuration tasks take

less staff and fewer hours to complete, the organisation saves money. Mozilla’s

DevOps department uses Terraform to provision and maintain its IT infrastructure and

claims that the use of IaC allows for an environment to be fully setup in a single

working day, when they compared their pre-Terraform environment creation

workflow to their current setup, Mozilla estimated that they save up to 500 operations

staff hours per year (Hashicorp, 2015). It can be concluded that the benefits of

adopting IaC have proven to be exhaustive (Hashicorp, 2015) (PuppetLabs, 2015)

(Forrester, 2015).

2.3.2 Infrastructure as Code Risks

IaC is not without its risks and potential pitfalls, the benefits are difficult to overstate

but can only be achieved when IaC is implemented correctly through changing how

the adopting organisation treats IT infrastructure by educating and fostering close

collaboration between operations and software engineers.

Organisations that have never utilised IaC and are planning to adopt it may encounter

problems; nearly a third of organisations in this situation that were surveyed by

Forrestor stated that they feel their staff lack the expertise to implement IaC

effectively (Forrester, 2015). Taking this into account, new staff may need to be hired

or existing staff may need to undergo intensive training and possibly move to different

roles in order to create and maintain IaC for organisations that have no previous

history in the area. Questions pertaining to the skillset required and actual

responsibilities of these new or retrained staff then arise. Will these new or retrained

staff be operations based with development knowledge, vice -versa, or will an entire

new team, dedicated to IaC need to be created? The bulk of cited problems with IaC

relate to its adoption because it is not a traditional paradigm in the IT field, rather it

is an interdepartmental technology that requires a great deal of effort to adopt and

utilise to reap its benefits.

Monetary investment and staff training are naturally required when adopting any type

of new technology, but adoption of IaC is not as simple as a new tool that one person

or one department will use, it is of paramount importance that both development and

47

operations departments are equally involved in all aspects of IaC. This is because a

wide variety of interdepartmental problems can stem from an incorrect adoption of

IaC and associated principles. Forrestor surveyed 150 IT professionals already

utilising IaC and found that the conflict between development and operations

department preference for specific tools and languages is the most difficult area when

adopting IaC (Forrester, 2015). It is true that development and operations play two

completely different roles in most organisations and forcing them to integrate and

collaborate will inevitably cause conflicts of interest, especially if the benefits of IaC

are not realised by everyone involved.

2.4 Infrastructure as Code and Infrastructure as a Service

The intersection of IaC and IaaS should be clear to any reader at this point, the two

are complimenting technologies and have evolved to co-exist with one another. A

point that should be considered here is that without the affordable scalability potential

offered by IaaS that IaC would not have become as popular and as powerful of a tool

as it is today, as discussed above, t rends show that IaC usage and progress as a

technology has increased significantly in the years after the release of EC2. It is cited

that IaC is the natural path of progression for IT management to take in the cloud era,

Morris is one such author, remarking that:

"The Infrastructure as Code approach is essential for managing cloud

infrastructure of any real scale or complexity” (Morris, 2016).

Morris outlines challenges in managing the overwhelming amount of affordable

infrastructure offered by the cloud, the most relevant to this paper are:

1. Server Sprawl

The ability to create new servers on-demand with little cost overhead can lead to

IT teams being unable to manually manage them properly. Server sprawl can lead

to configuration drift.

2. Configuration Drift

When new servers are created, the initial configuration may be consistent at the

time, but over time, new systems and updates are rolled out, but the existing

48

servers are not updated. This leaves the old servers outdated in terms of software

updates and essential configuration, and they are said to be in a state of

configuration drift, which can lead to snowflake servers.

3. Snowflake Servers

When a server is different from all others but the difference cannot be replicated,

a change has taken place on this server that causes it to either work for some

unknown reason (Morris, 2016).

The challenges outlined above all stem from the element of human error, that is, the

reliance on manually provisioning and configuring systems. Morris later concludes

that the adoption of IaC technologies can be a solution to all of the above if

implemented correctly through automated, standalone processes that require little to

no human intervention (Morris, 2016).

The case study section of this body of work relies heavily on IaC tools in order to

automate the migration of old, and creation of new environments in the cloud. The

process to automate the above is based on the princip les of effective use of IaC

outlined by Burgess and later by Morris (Burgess, 1998, p. 283) (Morris, 2016).

2.5 Infrastructure as a Service Migration

Cloud migration has been defined as the deployment of an organisation’s digital

assets, services, IT resources or applications to the cloud (Pahl, et al., 2013). Security

issues involved with the migration of sensitive data from non-cloud infrastructure to

IaaS have been covered extensively in existing literature (Khan & Al-Yasiri, 2015)

(Vu & Asal, 2012) (Manvi & Krishna Shyam, 2014). Another cited issue in the field

is the process of the migration of non-cloud infrastructure to the IaaS platform, in

particular, its technical aspects and lack of automation (Hwang, et al., 2015). This

issue is particularly under researched in an industry-based setting. The migration

process itself requires careful planning and typically involve custom ad-hoc execution

plans based on client requirements, as the ultimate solution will inevitably vary from

one client to another (Pahl, et al., 2013). A search of IEEE Digital Xplore online

library revealed that there have been four generalizable frameworks proposed to

49

handle the migration of non-cloud infrastructure to IaaS, what follows is an overview

of these frameworks, outlining the overall purpose and limitations of each.

The Migration Assessment Tool (MAT) presented by Mateescu, et al. is an online web

application that provides organisations with a detailed assessment of their non -cloud

infrastructure and determines what kind of IaaS solution would best suit their needs

(Mateescu, et al., 2014). The MAT architecture consists of a presentation layer which

handles user interaction, a business layer which creates and updates objects based on

the users input and a data layer which contains objects in a database that MAT

references and compares to the users input. All of the above components interoperate

with one another in order to take an organisation’s existing, non -cloud infrastructure

as an input, map out the infrastructure within the MAT database and compute the best

possible cloud-based solution and for the client. While this framework does pertain

to the field of migration of existing non-cloud infrastructure to IaaS, it covers only

pre-migration phase activities, it does not address the technical complexity aspects

involved in carrying out such a migration or provide an automated, repeatable process

for the migration itself.

Khan and Al-Yasiri have proposed a cloud migration framework for SMEs, this

framework is based off the general cloud adoption challenges and solutions obtained

from 72 interviews the researchers held as part of their study, interviewees range from

representatives from SMEs, representatives from CSPs and developers who specialise

in cloud technologies (Khan & Al-Yasiri, 2015). Khan and Al-Yasiri’s framework

aims to be generalizable to all service models of cloud computing and deals with all

phases involved in the migration process, it’s broad aim is to provide a stepwise guide

for SMEs to follow for their cloud migration project (Khan & Al-Yasiri, 2015). This

framework is broken down into the following three stages:

1. Cloud Requirement Stage (CRS)

This initial stage involves the assessment of client requirements regarding what

services are to be migrated to what platform, knowledge applied in this stage is

based on CSP advice and market studies.

2. Cloud Preparation Stage (CPS)

50

This middle stage is comprised of a comprehensive analysis of the adoption plan

obtained in the CRS, this stage involves risk assessment regrading regulatory

compliance, potential security issues and data classification.

3. Cloud Migration Stage (CMS)

This final stage outlines the migration and testing of live systems to the selected

cloud platform

This framework is centred on industry-based, real-world requirements. It presents a

guide for SMEs to decide what they can migrate, and the risks involved in doing so,

there is only a small section covering the actual process of migration. As the

framework encompasses all service models of cloud computing, and all service

models are inherently different from one another, the migration process outlined in

this paper does not cover any specific details on the process and technical details of

how the migration of existing non-cloud infrastructure can be achieved.

Sabiri et al. present a framework based on the Architecture Driven Modernization

(ADM) paradigm, the researchers describe a framework where legacy systems are

modernized to best suit the cloud platform (Sabiri, et al., 2015). The architecture of

this framework is comprised of a business layer which processes user requests and

implements business logic and a data layer which stores all data for the application

(Sabiri, et al., 2015). This framework involves the building of a Platform Specific

Model (PSM) of the existing system to migrate and a Platform Independent Model

(PIM) which is used to transform the PSM. The overall aim of this framework is to

modify the existing system so that the architecture of the system fosters portability to

a range of different platforms. This is achieved through a three step process:

1. Reverse Engineering

This first stage is comprised of the analysis of the source code of the legacy system

in order to discover components, relationships and dependencies within the

business logic, data layer and infrastructure layer of the system. From this

analysis, a PSM representation of the system is derived, which is then transformed

via the PIM transformation rules.

2. Transformation Upgrade

51

This second stage involves the optional addition of functionalities to the PIM

outputted in the Reverse Engineering stage.

3. Forward Engineering

This final stage is comprised of the transformation of the PIM back to a PSM, the

final output of this stage is the generation of the codebase for the new PSM (Sabiri,

et al., 2015).

This framework proposes a model-based approach for the analysis and modernisation

of a legacy system so that it can function on a cloud -based platform. This framework

does not deal with the cloud migration process in any capacity, nor does it address

the challenge of automation or implementation complexity involved the migration

process.

At the time of writing, the CMO framework proposed by Hwang et al. is possibly the

most pertinent piece in literature regarding the automated migration of non -cloud

infrastructure to the IaaS platform (Hwang, et al., 2015). In their paper, Hwang, et al.

describe the end-to-end process of cloud migration in its entirety, encompassing pre-

migration, migration and post-migration phases; they also provide a semi-automated

approach to the live migration of non-cloud infrastructure to IBM’s Softlayer IaaS

offering (Hwang, et al., 2015). The migration itself is performed by a three step

process, all of which is orchestrated by IBM’s Business Process Management (BPM)

software:

1. The Provision Stage

This first stage is almost completely automated, it comprises the provisioning of

the gateway, virtual network and VMs in Softlayer which match the non-cloud

infrastructure chosen to migrate. After these resources are provisioned, a Java -

based application configures them to behave in the same way their non -cloud

equivalents do.

2. The Network Setup Stage

This stage involves the manual creation of a WAN connecting the non -cloud

datacentre with the virtual cloud-based network created in The Provisioning Stage.

3. The Migration Stage

52

The final stage in the process entails the live migration of the VMs themselves,

this is achieved by utilising third party migration tools such as VMWare Site

Recovery Manager, vSphere Replication and VMWare Converter, all which CMO

supports varying levels of automation for (Hwang, et al., 2015).

The CMO effectively tackles the issues of migration complexity and lack of

automation in the migration process outlined by Mateescu et al. and Manvi and

Krishna Shyam respectively, and it does so with great efficiency (Mateescu, et al.,

2014) (Manvi & Krishna Shyam, 2014). In experimental results obtained from the

CMO under laboratory settings, the time taken to migrate a small datacentre is 44

hours, whereas, the time taken to migrate a single VM with 200GB of disk attached

is just over three hours (Hwang, et al., 2015). However, the CMO is specific to IBM’s

Softlayer as the target IaaS platform, and does not take into account other CSPs,

therefore the issue of vendor lock-in is prevalent here (Hwang, et al., 2015). The live

migration approach may be applicable for mission critical systems that require this

type of migration with as little down-time incurred as possible, but live migration

capability of CMO means that infrastructure is migrated to the cloud as-is. Using a

live migration for legacy data centres containing a large amount of test environments

where the issues of configuration drift, snowflake servers and server sprawl have

already occurred will not solve this issues, rather, it will move the problems to a

platform where the client is charged more for not solving them (Morris, 2016). The

CMO has yet to be tested outside of a laboratory setting, therefore it lacks the validity

of having been used in an industry-based setting (Hwang, et al., 2015).

The frameworks cited above all deal with various phases and activities involved in

the migration of non-cloud infrastructure to the IaaS platform, for the purpose of

clarity, the features of these frameworks have been summarised and plotted out in

Table 4 and Table 5. Table 4 shows the specific phases each framework addresses;

whereas, Table 5 shows the limitations and features of each framework.

Framework Pre-Migration Migration

MAT Yes No

Khan and Al-Yasiri Yes No

Sabiri et al. Yes No

CMO Yes Yes

Table 4: Existing Migration Frameworks Phase Comparison

53

Framework Vendor

Lock-in

Handles

Migration

Complexity

Automated

Migration

Industry

Tested

MAT No No No No

Khan and Al-Yasiri No No No No

Sabiri et al. No No No No

CMO Yes Yes Yes No

Table 5: Existing Migration Frameworks Features and Limitations Comparison

The MAT and the frameworks proposed by Sabiri et al. and Khan and Al-Yasiri all

address the pre-migration phases of assessment and planning. They are all free from

the issue of vendor lock-in as they are cloud agnostic in their methods. However, they

offer no form of automated migration, they do not deal with the technical complexity

of performing such a migration and they have never been tested in an industry setting.

To the author’s knowledge, the CMO is the only available framework that handles an

end-to-end migration scenario, encapsulating the assessment and planning activities

in the pre-migration phase alongside the technical process of the migration of non -

cloud infrastructure to the public cloud. The CMO offers a semi -automated approach

to the migration process but it is specific to IBM’s Softlayer IaaS platform and has

not been tested in an industry setting (Hwang, et al., 2015).

2.6 Conclusion

It is clear from reading the above that cloud computing is the most recent product of

several decades of IT evolution from relatively simple beginnings in the 1950s. As a

technology, the modern form of cloud computing is highly disruptive, and is rapidly

changing the world of IT.

This is especially true for the IaaS model which recently outperformed its on -premises

equivalent in terms of workloads, as mentioned above. The market is in a state of

transition as organisations with IT infrastructure flock to major CSPs to take

advantage of the many proposed benefits of adopting leased infrastructure.

The risks of adopting the IaaS approach are sti ll widely controversial, with the ever

emerging media reports of compromised cloud-based data and data centre outages

causing havoc to organisations. It is the opinion of the author that human beings

54

mistrust change, and a change as dramatic as leasing out IT infrastructure through the

Internet is bound to be met with scepticism, intense scrutiny and bias for several years

after reaching mainstream popularity. Organisations wary of IaaS should be made

aware that major CSPs aim to offer the most secure service possible, constantly

striving to win the most stringent security awards available. The six mentioned in this

chapter were the most recommended to have for those seeking secure 3 rd party

infrastructure, but they are six of numerous accreditations and awards that most major

CSPs hold. IT security should be a high priority for any sized organisation with IT

infrastructure, but most organisations security standards do not come close to

matching that of industry giants such as Microsoft, Google or Amazon, eac h of which

have years of experience in managing large scale data centres in a highly secure

manner. Natural disasters occur, as does human error, as do power outages, the effects

of each of these can materialise in any data centre, be it a small, on -premises server

room with a single rack or a huge CSP data centre.

The benefits of adopting IaaS are numerous, among them are the elimination of cost

overheads associated with procuring, housing and maintaining physical servers

alongside the ability to scale at will to virtually unlimited capacity or rapidly

downsize without incurring significant cost associated with decommissioning of

physical machinery. Although the ability to scale at will with little restriction raises

problems of its own, with configuration drift, non-uniformity of environments and

undocumented changes to infrastructure and server configuration among the top

offenders (Morris, 2016). It is argued by many that the solution to these problems

come in the form of IaC (Dadgar, 2014) (Forrester, 2015) (Morris, 2016) (Nelson-

Smith, 2013). The relatively new idea that entire networks, including the granular

configuration of individual servers can be scripted out, source controlled and

deployed in a repeatable manner to overcome the issues of maintaining the plethora

of IT infrastructure available as a service through cloud computing.

New organisations have the choice to either create their entire IT systems native to

the cloud or build their own data centre, however, prior to the launch of AWS’s EC2

in 2006, the option to build cloud-native IT systems was not available and the de facto

standard was to build a datacentre using physical servers (Barr, 2006). For

organisations with IT infrastructure pre-dating 2006, the option of migrating the cloud

is available, but the process of doing made extremely difficult by the fact that each

organisation has its own specific migration requirements and the solution chosen for

55

migration is typically custom built for the each individual organisation (Pahl, et al.,

2013). There are frameworks such as the MAT and the frameworks proposed by Sabiri

et al. and Khan and Al-Yasiri which aide organisations in the planning and assessment

phases of their cloud migration projects, but these frameworks do not handle the

technical complexity of performing such a migration, nor do they offer any form of

automated and repeatable process for the migration of large sets of testing

environments (Mateescu, et al., 2014) (Sabiri, et al., 2015) (Khan & Al-Yasiri, 2015).

CMO presented by Hwang, et al. does address the aforementioned issues of migration

complexity and automation in the migration process (Hwang, et al., 2015). This

framework does offer an automated and repeatable process, but it is locked to IBM’s

Softlayer IaaS platform, has not yet been tested outside of laboratory conditions and

does not solve the issues of configuration drift, snowflake servers or server sprawl

(Hwang, et al., 2015) (Morris, 2016). From analysing existing literature in the area,

the conclusion can be drawn that there currently exists no automated framework that

allows for the migration of non-cloud infrastructure to the IaaS platform that has been

tested in an industry-based setting and deals with the issues outlined by Morris

(Morris, 2016). In fact, at the time of writing, the only available industry-based paper

in the IEEE Digital Xplore Library on the migrat ion of existing, non-cloud

infrastructure to the IaaS platform is Khajeh-Hosseini, et al., however, no migration

was carried out as part of this study (Khajeh-Hosseini, et al., 2010) .

56

Chapter 3. Design and Implementation

This chapter provides context regarding the architectural and design and

implementation involved in this body of work. This chapter starts with a brief outline

of the case study carried out in the target organisation. This is followed by detailed

sections pertaining to the architecture and specific technologies used in the

implementation of an automated framework of interlinked IaC and configuration

management scripts. This is followed by a use case of the framework which provides

a clear context to its preceding sections and a knowledge base of the sequence of

technical processes involved in the running of automated framework. This chapter

ends with a section on the experimental use of the framework which allowed the case

study organisation to migrate their existing colocation based IT environment

infrastructure to AWS’s IaaS platform and create new IT environments on AWS’s

IaaS platform.

3.1 Case Study

The case study took place over the course of a 5 month period and involved the

placement of the researcher within the target SME. The overall purpose of the case

study was the gathering of functional and non-functional requirements for the

automated framework in the context of the case study organisation. The case study

also shaped the creation of a detailed project plan for the automated migration of the

case study organisations non-cloud infrastructure to the AWS IaaS platform. The

above was done through a phased process consisting of two distinct phases, both of

which are outlined below, followed by a detailed description of each phase throughout

the 5 month period:

1. Exploratory Phase

2. Project Planning Phase

57

3.1.1 Exploratory Phase

This phase began on the 1st of November 2015 and ended on the 22nd of January 2016.

The purpose of this phase was to gather client requirements, which were then used to

construct the architectural design of the framework. In order to achieve this, a detailed

analysis of the organisation’s traditional manual environment creation process was

carried out, with a focus on the tasks performed, alongside the time and effort

overheads imposed by carrying out each task. By engaging with staff belonging to the

organisation, the researcher built a base of knowledge around the manual in-house

environment creation process the organisation followed to create their environments

and also identified three key participants in the organisations manual environment

creation process, each working within an individual and unconnected technical

department in the organisation.

The researcher conducted semi-structured interviews with these three staff members.

These interviews revealed an in-depth set of tasks that each participant must carry out

before handing the environment over to the next participant. From the se interviews,

the researcher grouped each task that takes place in chronological order during the

entire manual environment creation process and abstracted them into the following

six high-level groups:

1. Provisioning of the new infrastructure.

This task comprises the creation of a new virtual machine from an existing virtual

machine. Included in this task are IP address, compute power and storage

allocation. This task is largely manual and is performed by a member of the

infrastructure department.

2. Documentation of the new infrastructure.

Documenting the specifications, location in the network and name of the new

environment is done by amending a Visio diagram with the above information.

This diagram is stored in a shared location that relevant employees within the

organisation have access to. This task is completely manual and is performed by

the infrastructure department.

3. Performing Active Directory domain operations.

58

This task involves two steps, the first is carrying out a Sysprep on the new

machine. Sysprep is a Windows specific generalisation tool which is used when

one Windows computer is cloned from another Windows computer, it remove all

traces of a previous machine from the cloned machine (Microsoft, 2017). The

second step in this task is to rename the new machine to a meaningful name that

falls in line with the organisations server naming conventions. The third and final

step is to add the machine to the correct organisational unit in the domain, which

essentially allows the new server to become part of the organisations network of

computers (Desmond, 2008).

4. Creating the Domain Name System (DNS) entries for the environment.

There are two separate kinds of DNS entries to be setup in this task. The first are

simple Active Directory DNS entries which allow users connected to the

organisations internal network to connect directly to the new server using the A

and CNAME entries created in this task. The second type of DNS entries requi red

for creation at this stage are the external DNS entries which allow users outside

of the organisations network to connect to the sites on the new server via a web

browser. These external DNS entries are not hosted within the organisation, rather,

they are hosted by a third party DNS provider. This task is completely manual and

is performed by the infrastructure department.

5. Setting up the environment specific configuration on server.

This task involves the modification of configuration files on the new server so

that the old environment values are removed from them and the new environment

values are inserted into them. Specific examples of these configuration files

include system files such as the HOSTS file and machine.config file, along with

application and website specific configuration files such as web.config and

app.config files. Internet Information Services configuration files also need to be

modified in this step. This step is completely manual and is performed by the

release management department.

6. Deploying the organisation’s Application and Database (A&D) codebase to the

new server.

The final step in the process is the deployment of the latest release of the

organisations A&D codebase to the new server. There is a large amount of code

59

from a range of different branches that is required to be deployed at this step ,

specifics on the size and number of branches that are deployed are discussed in

section 4.1.3 of this thesis. This step is largely automated by existing deployment

procedures, however, manual input is required in multiple places, and a significant

amount of manual work is involved in monitoring the deployments and

troubleshooting errors if they occur. This step is performed by the release

management department.

These processes are heavily referenced in the sections that follow and play an

important role in the architecture of the working system. The results of these

interviews also formed the benchmark for the manual environment creation timings

that became a key comparative variable in later sections of this document, the full

transcripts of said interviews can be found in Appendices A, B and C. Once the

researcher had a comprehensive understanding of the organisation’s manual in-house

environment creation process, this phase ended and was succeeded by the Project

Planning Phase.

3.1.2 Project Planning Phase

This phase took place between the 25 th of January 2016 and the 1st of April 2016. The

scope of the migration project for the case study organisation was created in this

phase. The initial project scope entailed a complete migration of the organisation’s

testing, staging and production environments to AWS’s IaaS platform . As the project

was being planned, the scope began to narrow due to two impediments, one major

impediment and one less severe, both will be discussed in this section. The researcher

believes these impediments and their consequence merit discussion in this section as

both had a direct effect on the design and implementation of the framework and should

give the reader an understanding of how industry requirements and academic research

are not always aligned with one another.

The first impediment pertains to security which has been detailed by Sadiku, et al. as

the greatest challenge when adopting public cloud infrastructure (Sadiku, et al.,

2014). This security issue pertains to the compliance issues with data belonging to

the clients of the case study organisation. One client in particular has a specific

agreement with the case study organisation that they reserve the right to inspect the

60

physical machinery that their sensitive data resides on, inclusive in this clause is any

data which relates to personally identifiable information. The implication was that,

the servers that host the front-end applications that the clients interact with and enter

data into, along with the servers that host the databases which contain the client

interaction information and associated data must be geographically locatable and

accessible if that client wishes to inspect it. In the case study organisation, this is

typically done via the client sending out an IT engineer on their behalf to inspect the

machine for physical faults and ensure it has not been tampered with in any way. The

client has an agreement with the organisation that no specific reason needs to be given

for this kind of inspection to be warranted.

This was an issue as it was found that Amazon follow a shared responsibility model,

visualised in Figure 8, in which the client who is leasing infrastructure is responsible

for all aspects of the data they host on that infrastructure, who can access it and how

it’s accessed, whereas AWS assumes the responsibility for securing the lower level

layers, starting from the virtualisation layer of the physical machines all the way down

to the security of the facilities in which the machines reside (Amazon, 2016).

Figure 8: AWS Shared Responsibility Model

61

The responsibility of the security of physical machines is out of the control of AWS’s

clients, therefore, AWS do not allow any of their clients to physically inspect the

computing machinery in their data centres, nor do they disclose the specific location

of their machines or data centre buildings to their clients (Amazon, 2016).

As a result of this, the project scope had to be narrowed down to exclude all

production and 3rd party testing environments, as these environments inherently

contain sensitive client information. Only data necessary for functional testing of the

organisation’s systems that is not linked to any real person was allowed to be hosted

on AWS infrastructure as part of this project. The project moved ahead regardless of

this, encapsulating only internal test environments tha t contain dummy data required

for development and testing.

At the project outset, eight existing internal testing environments needed to be

migrated to the public cloud in a very small amount of time in order to minimize

downtime for staff who would be act ively using these environments. Another

requirement that was agreed upon was the building of new testing environments native

to the cloud. A system needed to be created that was versatile enough to handle both

of these scenarios without differentiation.

It was planned to migrate the existing test environments directly to AWS, meaning

they were going to be exported as machine images from the colocation centre and

directly imported as AMIs across the Internet to the AWS data centre. AMIs are stored

in S3, and there is no transfer cost involved in incoming data , therefore, this approach

was seen as a straightforward and economically feasible one (Amazon, 2016).

Following this approach, each individual environment would need to follow a

relatively simple migration process, outlined below:

1. Take server off the organisation’s domain.

2. Sysprep and shutdown instance.

3. Export server as a machine image.

4. Import machine image to AWS as an AMI.

5. Launch as an EC2 instance.

6. Add instance to the organisation’s domain .

62

7. Modify all DNS entries that referenced the old machine to point to new instance

in the cloud.

However, upon further scrutiny, problems with this approach quickly began to

emerge. The cost overhead associated with duplicating each of individual

environment’s disk drives in AWS is one such factor. For instance, if eight

environments with 250GB of disk space were migrated following this approach, then

there would be eight imported AMIs taking up a combined total of over 2TB of disk

space and eight instances with separate storage also taking up a combined total of

over 2TB of disk space, essentially this would be doubling the amount of provisioned

S3 storage. Along with this, applying patches, installing updates and new applications

to each separate AMI and its associated instance also becomes a problem as

maintenance of this type of system is potentially very inefficient and lacks scalability

if more environments were to be migrated. This type of system also neglects new

environments that are created native to the cloud, so an entirely different system

would need to be designed for creating these new environments in AWS. Therefore,

need for a single AMI that has the minimum amount configured on it (i.e. specific

operating system, disk drives, etc.) arose. The environment specific configurations

were to be defined through IaC in the form of Terraform and configuration

management in the form of Puppet. Any updates that needed to be installed can be

done through either configuration management code on the instances themselves or

installed on the single AMI that the process would build instances from.

The concept of building new machines in the cloud brought about its own challenges,

and led to the second impediment, which pertains to a section of the environment

creation process that could not be automated through code, namely the setting up of

the external DNS entries for the websites that are hosted on the environments. In the

case study organisation, existing networking layer components such as internal IP

addresses, internal and external DNS entries can all be reused for machines that were

to be rebuilt in the cloud. For new machines being built in the cloud, all of these

entries needed to be created. It was desired that any infrastructure, including

networking, created in the cloud could be done through source controllable IaC.

However, an issue was recognised early on in the case study that limited the scope of

the automation. The DNS service provider that the case study organisation was

subscribed to offered no Application Programming Interface (API) for the creation

and modification of DNS entries, essentially meaning tha t the DNS provider did not

63

allow for IaC tools to create and manage DNS entries. These external DNS entries

had to be created manually for any new environments being built in the cloud, which

became a large gap in the process of automation.

3.1.3 Functional Requirements

Based on the above, the following functional requirements the framework were

derived:

1. The framework should be capable of rebuilding the case study organisation’s

existing internal testing environments on an IaaS platform in an automated

fashion.

2. The framework should be capable of creating new testing environments belonging

to the case study organisation on an IaaS platform in an automated fashion.

3. The framework should be capable of outputting meaningful errors and terminating

upon a non-zero exit code of any underlying script.

3.1.4 Non-Functional Requirements

The non-functional requirements for the framework are as follows:

1. The framework should be capable of achieving the functional requirements with a

single server image.

2. The framework should only have a single human operator.

3. The framework should abstract the underlying processes to the operator in a

meaningful way for troubleshooting purposes.

4. The framework should have a single entry point of execution.

5. The framework should have a single point of monitoring.

105

time the researcher or supporting technical staff spent to solve the errors and restart

the build chain from its point of failure. The rate of failure of the framework should

be of interest of any reader, as it shows how automated tasks can be more efficient in

terms of time and effort, but also may be more unreliable than manually performing

these tasks in practise. After each run of the framework, execution timin gs, rates of

error and manual troubleshooting times for each build were extracted and placed in

an Excel spreadsheet for later analysis. Along with the above, the researcher manually

entered the category of the framework run into the spreadsheet. These cat egories are

divided into two separate subsets, either Recreation or Creation, depending on the

environment in question.

The Recreation timings were taken from execution runs of the framework where an

existing, in-house machine is being recreated on public cloud infrastructure. The

Creation timings were taken from execution runs of the framework where a new

environment is created native to public cloud infrastructure. As previously mentioned

in section 3.1.2, the creation of the external DNS entries required for each

environment to function was not automatable due to the case study organisation’s

subscription to a DNS provider that did not provide an API for programma tic

interaction. Therefore, the creation of these external DNS entries was performed

manually for newly created environments that fall into this subset. This task is not

applicable to environments in the Recreation subset as these entries were already in

place for environments that had previously existed in -house. The timings for this task

were derived from the manual estimates provided by staff in the semi -structured

interviews and is the same as the timing for external DNS creation in the manual set.

The volume of data in the Automated set was far larger than that of the Manual set,

but it was still manageable enough for the researcher to manually parse and enter this

set into an Excel spreadsheet for analysis. The automated timings were gathered on a

per-build basis, meaning that, each build in the chain provided its own raw timing

data broken down into the following sections:

1. Provisioning Build

2. Domain Build

3. Configuration Build

4. Deployment Build

106

The Manual timings set had each individual task matched to an approximate time it

took to complete with no form of categorisation of tasks. Whereas, the automated

timing set was already categorised as outlined above. Therefore, the researcher

classified the tasks in the manual timings set to match those from the auto mated timing

set, factored in the troubleshooting work and external DNS entry creation and created

the following data groups common to both for comparison:

1. Provisioning Tasks

2. Domain Operations

3. Server Configuration

4. Deployment of Codebase

5. Troubleshooting

6. External DNS Creation

 Data Analysis

The timing data for both sets outlined above is relatively simple and does not contain

excessive levels of complexity. The Manual set contains a single set of approximated

timings for each task, these timings were retrieved from semi-structured interviews

with staff belonging to the case study organisation who previous carried out these

tasks on a regular basis. The Automated set contains a significantly larger volume of

data as it was taken from repeated, real-world runs of the automated framework.

Therefore, following classification, it was necessary to find the most appropriate

calculation of the average timings for each data group in the automated data set.

The data for the automated timings did not contain a large amo unt of lower or higher

extremes, due to the nature of automation itself, the execution times follow a regular

pattern. Therefore, the researcher calculated the averages of the automated runtimes

by calculating the mean average of each data group. There were some manual tasks

that needed to be performed during the automated process for troubleshooting errors

when the framework failed, to ensure uniformity in results comparison, the mean

average was calculated for these timings to find the most appropriate mi dpoint of data.

The above data groups from the Automated timings data set were compared to the

107

same data groups from the Manual timings data set. As the timings for each data group

varied greatly, the researcher calculated the time in minutes per data group, as some

tasks from the Automated data set take seconds, where other tasks take hours.

Similarly, some tasks from the Manual data set have been approximated to take

minutes to carry out, whereas other tasks from the same set have been cited to take

several hours. This was necessary for comparative purposes as it is desirable to group

all data together in a standard, uniform manner.

4.2.2 Sample Size

Varying sample sizes are present for each of the above sets, what follows is a

discussion of the sample sizes from the Manual timings dataset and Automated

timings dataset along with the Creation and Recreation subsets of the Automated

timings dataset.

Data from the Manual timings dataset were extracted from transcripts of the semi -

structured interviews with the case study organisation staff members, these interviews

were held by the researcher in the Exploratory Phase of the case study. It can be said

that the sample size for this set is limited to a single sample as the timings for a

manual environment creation or migration are based on approximations provided by

various staff members that were previously tasked with carrying out the manual steps

in the environment creation process. Manual creations or migrations of environments

theoretically could have taken place to provide a more ample sample size, but this

was not possible to carry out due to resource constraints and the practical nature of

performing industry-based research. In that, the researcher was not in a position to

request that three technical engineers from within the organisation halt their work to

manually create several test environments and detail the time and effort is took to

perform each task to generate a larger sample size for this dataset . Due to this

constraint, the sample size and quality of this sample is relatively poor when

compared with the Automated dataset.

Data from the Automated dataset were obtained directly from the TeamCity build

chain execution logs of the framework. These timings are far more precise and reliable

than the manual timings set as these timings were captured automatically and in real-

time by TeamCity. In total, 39 execution logs are included in the sample size for this

108

set. Similar to the limitation for the Manual timings set, the sample size for the

Automated timings set was restricted by the case study organisations requirements.

Each test environment that was generated via the automated framework was done so

on-demand as a requirement for the case study organisation’s development or testing

departments. Once the environment instance has been created at the beginning of the

framework execution, it immediately incurs a direct cost overhead to the organisation.

Therefore, the researcher could not execute the framework to generate test

environments at will in order to increase the sample size for this set, as the cost effect

of doing so would cause an unfeasible amount of strain on the resources that the

organisation had dedicated to this project.

The Automated timings set is broken down into two subsets, Recreation and Creation.

The Recreation subset consists of timing data retrieved from the execution of the

framework where an existing, in-house machine is being recreated on public cloud

infrastructure. A total of 8 execution logs are included in this subset. The Creation

subset consists of timing data retrieved from the execution of the framework where a

new environment is created native to public cloud infrastructure. A total of 31

execution logs are included in this subset.

4.2.3 Comparison of Manual and Automated Datasets

The Manual Timings and Automated Timings datasets are presented and compared in

this section, by plotting the raw data from each dataset on the same charts, a clear

comparison of timings from both processes can be seen. In this instance, the

Automated Timings dataset is a general view of the dataset, it is comprised of the

combined average means of the Creation and Recreation subsets.

 Overall Process Comparison

The most important area of the results are presented here. The comparison of the

overall environment creation process when performed manually and when performed

through the automated framework is shown here. Figure 23 is by far the most

simplistic, and possibly the most significant illustration of data in this entire

document.

109

Figure 23: Data Set Comparison: Automated vs. Manual

It makes no distinction between tasks, rather, it combines all tasks in both processes

to display an overall comparison of the automated and manual processes in terms of

timings for both.

It can be seen in Figure 23 that the automated process as a whole is 360% faster than

the manual process. The manual process itself takes 2,250 minutes or 37.5 hours in

total, whereas, the automated process takes 489 minutes or 8.15 hours.

 Individual Task Comparison

Figure 24 demonstrates a more detailed breakdown of this overall process comparison,

it shows each task and their associated timings in a side-by-side comparison. Figure

24 provides a more detailed view of the efficacy of the automated framework than

Figure 23. One can see from Figure 24 that, in the highest performing task the

framework can handle the Provisioning Tasks 8,092% faster than the manual process,

even in the lowest performing task, the framework can handle the Deployment of Code

140% faster than the manual process.

Total

Automated 489

Manual 2250

0

300

600

900

1200

1500

1800

2100

2400

M
in

u
te

s
Data Set Comparison: Automated vs. Manual

110

Figure 24: Task Comparison: Automated vs. Manual

 Task Proportion Comparison

These data sets varied greatly not only in actual timings, but also in terms of

proportion of time taken to complete various tasks in view of the overall process.

Figure 25 shows the proportion of time each task took to complete in the manual

process, whereas, Figure 26 shows the proportion of time each task took to complete

in the automated process. It is evident from Figure 25 and Figure 26 that the

operations in the Deployment of Codebase task take the most time to perform

regardless of the use of public cloud and IaC technologies, in fact, the proportion of

time this task took to complete in the automated process increased by over 91% when

compared to the manual process. While it only accounts for a small portion of time in

both processes, it is worth mentioning that the proportion of time to complete the

External DNS Creation task increased by over 207% in environments created by the

automated process. Speculation as to why these increases in proportional time

occurred is covered in the Discussion chapter of this document.

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment
of Codebase

External DNS
Creation

Trouble
Shooting

Automated 0.69 32.33 66.39 347.08 40.00 23.36

Manual 60.00 270.00 750.00 810.00 60.00 300.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

M
in

u
te

s
Task Comparison: Automated vs. Manual

111

Figure 25: Manual Timings: Breakdown of overall process

One can also see from Figure 25 and Figure 26 that the proportion of time taken to

perform the Provisioning Tasks, Domain Operations, Server Configuration and

Troubleshooting tasks have all been reduced by a significant factor. Server

Configuration is the most pertinent area to focus on here as these tasks are the second

most time consuming to carry out in both the automated and the manual process. These

tasks take up exactly one third of the total time in the manual process.

Whereas, in the automated process, Server Configuration tasks only account for

13.5%. Another interesting metric comparison to note from Figure 25 and Figure 26

is the discrepancy between the proportions of time spent on the Troubleshooting task.

In the manual process, the Troubleshooting tasks account for 13.3% of the total

process time, whereas, in the automated process only 2.4% of the total process time

is spent on these tasks.

2.67%

12.00%

33.33%
36.00%

2.67% 13.33%

Manual Timings: Breakdown of overall process

Provisioning Tasks

Domain Operations

Server Configration

Deployment of Codebase

External DNS Creation

Troubleshooting

112

Figure 26: Automated Timings: Breakdown of overall process

 Effort Comparison

Not only is the automated process several magnitudes faster than the manual

equivalent, the effort overhead involved is also decreased significantly. The only

tasks in the automated set that contain any effort overhead are the Troubleshooting

and External DNS Creation tasks. While it was impossible to automate the External

DNS Creation task, the framework does allow for a reduction in manual

troubleshooting time of 4.8 hours per environment, which is a proportional decrease

in time of 96%. The automated process contains only a fraction of manual work,

calculated by adding the averages of the Troubleshooting and External DNS Creation

tasks. The total manual work involved in the manual process is 2,250 minutes or 37.5

hours, whereas, the total average manual work involved across all runs of the

automated process is a mere 52 minutes, this comparison reveals a difference between

the two metrics. In total, the manual process requires over 43 times more manual

effort than that of the automated process.

0.15%

6.84%

13.54%

68.88%

8.18%

2.41%

Automated Timings: Breakdown of overall
process

Provisioning Tasks

Domain Operations

Server Configration

Deployment of Codebase

External DNS Creation

Troubleshooting

130

Figure 34: Storage Capacity Experiment Task Comparison

Figure 34 shows that the storage allocated to the environment being created by the

framework can have a dramatic and non-linear effect on the speed of various tasks.

The main tasks responsible for timing discrepancy in this experiment are the Server

Configuration and Deployment of Codebase tasks, while a ll other tasks take relatively

the same amount of time. An unexpected result is the increase in time require for the

Server Configuration task to complete as the storage allocated to the environment is

increased. The Low Storage AMI handles this task faster than the Baseline AMI,

similarly the Baseline AMI handles this task faster than the High Storage AMI. The

Deployment of Codebase task is the main culprit for the unpredicted skew in timing

data, taking far longer for the Baseline AMI than the Low Storage or High Storage

AMI. Another unanticipated difference to note here is the slight difference in timing

between the Low Storage and High Storage AMIs. The Low Storage AMI handles this

task slightly faster than the High Storage AMI.

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment of
Codebase

Trouble Shooting

Low Storage 0.97 29.87 60.38 182.20 10.00

Baseline 1.11 28.95 65.79 251.39 10.00

High Storage 0.93 29.13 75.23 188.55 8.33

0.00

50.00

100.00

150.00

200.00

250.00

300.00

M
in

u
te

s
Storage Capacity Experiment: Task Comparison

138

efficiency capabilities that these technologies can provide to an organisation when

they are implemented correctly. Figure 23 is the best method of visualizing the

difference in timings between the two processes. It shows that, when the processes

are compared, the automated process is 360% faster than the manual process. The data

this figure illustrates is an adequate means for answering the research question inside

of the context of the organisation the framework was implemented in.

A valid question arises when examining Figure 23 one pertaining to the

generalizability of the manual process timings in the context of the wider audience.

It could be argued that the case study organisation had an extremely inefficient

environment creation process and the automated timing comparison is intentionally

providing a false equivalency to bolster the efficacy of the framework. However, the

survey results presented in section 4.4.4 show that organisations not utilizing IaC

tools take, on average, relatively the same time to create environments through their

manual processes. The results of the survey questionnaire carried out as part of this

study also show that organisations that have implemented IaC tools have a far more

streamlined environment creation process than that achieved in the case study via the

automated framework. To further this point, external industry -based surveys detailed

in sections 2.1.3 and 2.3.1 of the Background and Literature Review chapter also

present data suggesting that faster access to infrastructure and faster configuration

workflows are two of the most cited benefits of implementing IaaS and IaC tools

(RightScale, 2014) (RightScale, 2015) (Forrester, 2015). Therefore, from the above,

one can conclude that the comparison between the overall manual and automated

processes is indeed valid, and that similar results could be obtained if the framework

was to be implemented in an organisation that was not currently utilizing IaC tools or

IaaS.

 Review of Individual Task Comparison Results

The individual task comparison between the manual and automated processes is

presented in section 4.2.4.2. Figure 24 visualizes varying discrepancies between the

timings in the automated and manual processes, all tasks are faster when run under

the automated system, but some outrank others by several magnitudes in terms of

speed. Figure 25 presents the proportion of time taken for each task in the manual

