"The Geometry of the Space of Oriented Geodesics of Hyperbolic 3-Space" by Nikos Georgiou

Date of Award

2009

Document Type

Doctoral Thesis

Degree Name

Doctor of Philosophy

Department

Institute of Technology Tralee

First Advisor

Dr. Brendan Guilfoyle

Abstract

In this thesis we construct a Kähler structure (J, Ω, G) on the space L(H3) of oriented geodesics of hyperbolic 3-space H3 and investigate its properties. We prove that (L(H3),J) is biholomorphic to (see thesis pdf), and that the Kähler metric G is of neutral signature, conformally flat and scalar flat.

We establish that the identity component of the isometry group of the metric G on L(H3) is isomorphic to the identity component of the hyperbolic isometry group. We show that the geodesics of G correspond to ruled minimal surfaces in H3, which are totally geodesic iff the geodesics are null.

We then study 2-dimensional submanifolds of the space L(H3) of oriented geodesics of hyperbolic 3-space, endowed with the canonical neutral Kähler structure. Such a surface is Lagrangian iff there exists a surface in H3 orthogonal to the geodesics of Σ.

We prove that the induced metric on a Lagrangian surface in L(H3) has zero Gauss curvature iff the orthogonal surfaces in H3 are Weingarten: the eigenvalues of the second fundamental form are functionally related. We then classify the totally null surfaces in L(H3) and recover the well-known holomorphic constructions of flat and CMC 1 surfaces in H3

Comments

Submitted for the Degree of Doctor of Philosophy in Mathematics

Access Level

info:eu-repo/semantics/openAccess

Share

COinS